1.中国科学院深地科学卓越创新中心 / 中国科学院广州地球化学研究所, 广东 广州510640
2.中国地质大学(武汉)资源学院,湖北 武汉 430074
赵振华,二级研究员,博士生导师。曾任中国科学院广州地球化学研究所所长兼党委书记,广东省矿物岩石地球化学学会理事长。长期从事花岗岩类及相关矿床地球化学研究,曾负责多项国家和中国科学院重大基础理论研究和科技攻关项目,曾任国家攀登计划“与寻找超大型矿床有关的基础研究”首席科学家。第一作者学术论文62 篇,其中SCI 论文20篇;第一作者专著6部。以主要获奖人曾获得国家自然科学一等奖1项,二等奖2项;国家科技进步二等奖1项;省部级科技进步一等奖5项。1992年获国务院政府特殊津贴,2008年获中国科学院杰出贡献教师奖,2019年获“庆祝中华人民共和国成立70周年”纪念章。
纸质出版日期:2022-01-25,
网络出版日期:2021-11-09,
收稿日期:2021-07-26,
录用日期:2021-08-16
扫 描 看 全 文
赵振华,陈华勇,韩金生.新疆阿尔泰造山带中生代伟晶岩的稀有金属成矿作用[J].中山大学学报(自然科学版),2022,61(01):1-26.
ZHAO Zhenhua,CHEN Huayong,HAN Jinsheng.Rare metal mineralization of the Mesozoic pegmatite in Altay orogeny, northern Xinjiang[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(01):1-26.
赵振华,陈华勇,韩金生.新疆阿尔泰造山带中生代伟晶岩的稀有金属成矿作用[J].中山大学学报(自然科学版),2022,61(01):1-26. DOI: 10.13471/j.cnki.acta.snus.2021D058.
ZHAO Zhenhua,CHEN Huayong,HAN Jinsheng.Rare metal mineralization of the Mesozoic pegmatite in Altay orogeny, northern Xinjiang[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(01):1-26. DOI: 10.13471/j.cnki.acta.snus.2021D058.
阿尔泰稀有金属伟晶岩具有大规模、多时代、多类型特点,主要形成于晚古生代-早中生代,形成了以可可托海3号伟晶岩脉为代表的、三叠纪世界级大、超大型稀有金属伟晶岩成矿带。大量精确定年数据表明,中生代是阿尔泰稀有金属伟晶岩主要成矿期,其中三叠纪(250~202 Ma)是稀有金属伟晶岩成矿高峰期。本区仅有少量稀有金属伟晶岩与同时期的花岗岩有直接成因联系(如阿尔卡斯特Be-Nb-Mo伟晶岩)。中生代稀有金属伟晶岩的显著特点是其产出规模远超过同时代花岗岩,其形成与赋矿花岗岩存在显著时差(约200 Ma)和地球化学特征的不连续,如
ε
Hf
(t)及Nb/Ta、Zr/Hf、K/Rb等比值不同,表明伟晶岩与花岗岩无成因关系。著名的可可托海稀有金属三号伟晶岩脉虽与阿拉尔花岗岩形成年龄相近(220~211 Ma),但它们之间距离超过10 km,地球化学特征也有较明显差异,而被认为两者无直接成因联系。与常见稀有金属伟晶岩不同,阿尔泰中生代稀有金属伟晶岩与赋存花岗岩的时、空及地球化学特征存在明显差异,成矿规模巨大,本文将其称为“阿尔泰型伟晶岩”。其源区为不成熟地壳与变泥质古老地壳物质混合源,在陆内伸展减压背景下发生小比例(
<
10%)脱水部分熔融形成独立伟晶岩岩浆,即深熔伟晶岩,经高程度分离结晶的熔体-流体共存系统形成稀有金属伟晶岩矿床。
Rare metal pegmatites in the Chinese Altay have shown characteristics of multi-period
multi-type and mainly formed in the late Paleozoic to early Mesozoic. A world-class large-superlarge scale rare metal pegmatite metallogenic belt represented by the Keketuohai rare metal No.3 pegmatite is the most prominent feature of Altay orogeny
with a peak forming age in the Triassic (250-202 Ma). There are only a few Mesozoic rare metal pegmatites related to synchronous high fractionated granitic melts (such as Askaerte Be-Nb-Mo pegmatite). The Keketuohai rare metal No.3 pegmatite has nearly the same zircon U-Pb ages (220-211 Ma) as the Ala'er granites
but they are not related in genesis because of the distance between them excessing 10 km and the different
ε
Hf
(t) values. The Mesozoic pegmatites are widely distributed but the synchronous granites are relatively less. Most rare metal pegmatites display temporal decoupling(large gap of forming age) and different sources (
ε
Hf
(t)
Nb/Ta
Zr/Hf
and K/Rb ratios) with their surrounding granites
indicating that pegmatites in the Chinese Altay were not derived from differentiated granitic melts. A reasonable genetic model for the Mesozoic Altay rare metal pegmatite is that they were generated by lower degree (
<
10%) dehydration partial melting of a mixed juvenile with metapelite source
i.e.
anatectic pegmatite—the Altay-type rare metal pegmatite.
中国阿尔泰稀有金属伟晶岩中生代深熔伟晶岩
Chinese Altayrare metal pegmatiteMesozoicanatectic pegmatite
WINDLEY B F, KRŐNER A, GUO J, et al. Neoproterozoic to Paleozoic geology of the Altai Orogen, NW China: new zircon age data and tectonic evolution[J]. Journal of Geology, 2002, 110:719-737.
XIAO W J, WINDELY B F, BADARCH G, et al. Palaeozoic accretionary and convergent tectonics of the southern Altaids: implications for the growth of Central Asia[J]. Journal of the Geological Society,2004,161:339-342.
WINDLEY B F, ALEXEIEV D, XIAO W J, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J].Journal of Geological Society,2007, 164: 31-47.
张辉,吕正航,唐勇. 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向[J]. 矿床地质,2019, 38(4): 792-814.
BROUSSOLLE A, SUN M, SCHULMANN K, et al. Are the Chinese Altai “terranes” the result of juxtaposition of different crustal levels during Late Devonian and Permian orogenesis?[J] Gondwana Research,2019, 66: 183-206.
肖文交, 舒良树, 高俊, 等. 中亚造山带大陆动力学过程与成矿作用[J]. 新疆地质,2008, 26(1): 4-8.
WANG T, TONG Y, JAHN B M, et al. SHRIMP U-Pb zircon geochronology of the Altai No.3 pegmatite, NW China, and its implications for the origin and tectonic setting of the pegmatite[J].Ore Geology Reviews, 2007,32: 325-336.
刘锋, 张志欣, 李强,等. 新疆可可托海3号伟晶岩脉成岩时代的限定:来自辉钼矿Re-Os 定年的证据 [J]. 矿床地质, 2012, 31(5): 1111-1118.
CHE X D, WU F Y, WANG R C, et al. In situ U-Pb isotopic dating of columbite-tantalite by LA-ICP-MS[J]. Ore Geology Reviews, 2015, 65: 979-989.
陈剑锋,张辉,张锦煦,等. 新疆可可托海3号伟晶岩脉锆石U-Pb定年、Hf同位素特征及地质意义[J]. 中国有色金属学报, 2018, 28(9): 1832-1844.
WANG T, JAHN B M, KOVACH V P, et al. Mesozoic intraplate granitic magmatism in the Altai accretionary orogeny, NW China: implications for the orogenic architecture and crustal growth[J]. American Journal of Science, 2014, 314: 1-42.
蔺新望,张亚峰,王星,等.新疆阿尔泰友谊峰地区木孜他乌岩体锆石U-Pb年龄及地质意义[J]. 西北地质,2017,50(3): 83-91.
田红彪,陈有炘,何峻岭, 等. 阿尔泰地区霍热木德克花岗岩体年代学、地球化学特征及构造意义[J]. 成都理工大学学报(自然科学版), 2017, 44(1): 94-108.
陈有炘, 高峰, 裴先治, 等. 新疆阿尔泰地区辉腾花岗岩体年代学、地球化学特征及构造意义[J]. 岩石学报, 2017, 33(10): 3076-3090.
刘松柏,窦虎,张为民,等.准噶尔东北亚克拉铜矿地区侏罗纪粗安岩的分析及地质意义[J].地质论评, 2018, 64(6): 1519-1529.
刘松柏,窦虎,李海波,等. 新疆东天山博格达地区晚侏罗世中酸性侵入岩的发现、锆石U-Pb 年龄及其地质意义[J]. 地质通报, 2019,38 (2/3): 288-294.
LV Z H, ZHANG H, TANG Y, et al. Petrogenesis and magmatic–hydrothermal evolution time limitation of Kelumute No.112 pegmatite in Altay, Northwestern China: evidence from zircon U-Pb and Hf isotopes[J]. Lithos, 2012, 154: 374-391.
吕正航, 张辉, 唐勇. 新疆别也萨麻斯L1号伟晶岩脉Li-Nb-Ta矿床与围岩花岗岩成因关系研究[J].矿物学报, 2015(Suppl): 323.
杨富全,张忠利,王蕊,等.新疆阿尔泰稀有金属矿地质特征及成矿作用[J]. 大地构造与成矿学, 2018,42(6): 1010-1026.
丁建刚,杨成栋,杨富全,等. 新疆阿尔泰别也萨麻斯稀有金属矿床含矿伟晶岩与花岗岩围岩成因关系[J]. 地球科学与环境学报, 2020, 42(1): 71-85.
何晗晗,艾尔肯·吐尔孙,王登红,等. 新疆别也萨麻斯矿区钽锰矿的矿物学特征及其TIMS U-Pb定年[J]. 岩矿测试,2020, 39(4): 609-619.
任宝琴,张辉,唐勇,等. 阿尔泰造山带伟晶岩年代学及其地质意义[J]. 矿物学报, 2011, 31(3): 587-596.
秦克章, 申茂德, 唐冬梅, 等. 阿尔泰造山带伟晶岩型稀有金属矿化类型与成岩成矿时代[J]. 新疆地质, 2013,31(Suppl): 1-7.
马占龙, 张辉, 唐勇, 等. 新疆卡鲁安矿区伟晶岩锆石U-Pb定年、铪同位素组成及其与哈龙花岗岩成因关系研究[J]. 地球化学, 2015,44(1): 9-26.
刘文政, 张辉, 唐红峰, 等. 新疆阿斯喀尔特铍钼矿床中辉钼矿Re-Os定年及成因意义[J]. 地球化学, 2015, 44(2): 145-154.
邹天人, 李庆昌. 中国新疆稀有及稀土金属矿床[M]. 北京: 地质出版社, 2006.
邹天人, 张相宸, 贾富义, 等. 论阿尔泰3号伟晶岩脉的成因[J]. 矿床地质, 1986,5(4): 34-48.
陈富文,李华芹,王登红. 中国阿尔泰造山带燕山期成岩成矿同位素年代学新证据[J].科学通报, 1999, 44(11): 1142-1147.
ZHOU Q F, QIN K Z, TANG D M, et al. LA-ICP-MS U-Pb zircon, columbite-tantalite and 40Ar-39Ar muscovite age constraints for the rare-element pegmatite dykes in the Altay orogenic belt, NW China[J]. Geology Magazine, 2018, 158(3): 707-728.
闫军武,刘锋,申颖,等. 新疆可可托海伟晶岩田岩浆活动时限与伟晶岩形成[J]. 地球学报,2020, 41(5): 663-674.
杨富全,张志欣,刘国仁,等. 新疆中亚造山带三叠纪矿床地质特征、时空分布及找矿方向[J]. 矿床地质,2020,39(2):197-214.
王春龙,秦克章,唐冬梅,等. 阿尔泰阿斯喀尔特Be-Nb-Mo矿床年代学、锆石Hf同位素研究及其意义[J]. 岩石学报,2015,31(8):2337-2352.
丁欣,李建康,丁建刚,等. 新疆阿斯喀尔特Be-Nb-Mo矿床Re-Os同位素年龄及地质意义[J]. 桂林理工大学学报,2016,36(1):60-65.
ZHANG X, ZHANG H, MA Z L, et al. A new model for the granite-pegmatite genetic relationships in the Kaluan-Azubai-Qiongkuer pegmatite-related ore fields, the Chinese Altay[J]. Journal of Asian Earth Sciences,2016,124:139-155.
FENG Y, LIANG T, ZHANG Z, et al. Columbite U-Pb Geochronology of Kalu'an lithium pegmatites in Northern Xinjiang, China: implications for genesis and emplacement history of rare-element pegmatites[J]. Minerals,2019,9(8):456.
周天怡. 中国新疆阿祖拜伟晶岩型海蓝宝石成因研究[D]. 北京:北京大学,2015.
WANG T, HONG D W, JAHN B M, et al. Timing, petrogenesis, and setting of Paleozoic synorogenic intrusions from the Altai mountains, Northwest China: Implications for the tectonic evolution of an accretionary orogeny[J]. The Journal of Geology, 2006, 114: 735-751.
王登红,陈毓川,徐志刚,等. 阿尔泰成矿省的成矿系列与成矿规律[M]. 北京:原子能出版社,2002.
张亚峰,蔺新望,郭岐明,等. 阿尔泰南缘可可托海地区阿拉尔花岗岩体LA-ICP-MS锆石U-Pb定年、岩石地球化学特征及其源区意义[J]. 地质学报,2015,89(2):339-354.
吴云辉,熊小林,赵太平,等. 新疆东戈壁斑岩型Mo矿辉钼矿Re-Os年龄和成矿岩体锆石U-Pb年龄及其地质意义[J]. 大地构造与成矿学,2013,37(4):743-753.
刘宏. 新疆阿尔泰阿拉尔花岗岩地球化学特征及其与可可托海3号脉演化关系[D]. 昆明:昆明理工大学,2013.
彭素霞,程建新,丁建刚,等. 阿尔泰阿拉尔岩体周缘花岗岩序列与伟晶岩成因关系探讨[J]. 西北地质,2015,48(3):202-213.
郑建平,王方正,成中梅,等. 拼合的准噶尔盆地基底:基底火山岩Sr-Nd同位素证据[J]. 地球科学,2000,25(2):179-185.
王中刚,赵振华,邹天人. 阿尔泰花岗岩类地球化学[M]. 北京:科学出版社,2013.743-753.
LIU Y L, ZHANG H, TANG Y, et al. Petrogenesis and tectonic setting of the Middle Permian A-type granites in Altay, northwestern China: Evidences from geochronological, geochemical, and Hf isotopic studies[J]. Geological Journal, 2018, 53(2): 527-546.
徐新,陈川,丁天府,等. 准噶尔西北缘早侏罗世玄武岩的发现及地质意义[J]. 新疆地质,2008,26(1):9-16.
李华芹,吴华,陈富文,等. 东天山白山铼钼矿区燕山期成岩成矿作用同位素年代学证据[J]. 地质学报,2005,79(2):249-255.
朱文斌,王富军,曹远远,等. 天山及邻区燕山期构造岩浆事件[J]. 地质学报,2020,94(5):1331-1346.
刘锋,曹峰,张志欣,等. 新疆可可托海近3号脉花岗岩成岩时代及地球化学特征研究[J]. 岩石学报,2014,30(1):1-15.
刘涛,田世洪,王登红,等. 新疆卡鲁安硬岩型锂矿床花岗岩与伟晶岩成因关系:锆石U-Pb定年、Hf-O同位素和全岩地球化学证据[J]. 地质学报,2020,94(11):3293-3334.
童英,王涛,洪大卫,等. 中国阿尔泰造山带花岗岩 Pb 同位素组成特征: 幔源成因佐证及陆壳生长意义[J]. 地质学报,2006,80(4):517-528.
张辉,刘宏. 新疆可可托海3号伟晶岩脉是阿拉尔花岗岩岩浆演化晚期的产物?[J]. 矿物学报,2013,33(Suppl 2):279.
CAI K D, SUN M, YUAN C, et al. Keketuohai mafic-ultramafic complex in the Chinese Altai, NW China: Petrogenesis and geodynamic significance[J]. Chemical Geology, 2012, 294: 26-41.
ZHU Y F, ZENG Y, GU L. Geochemistry of the rare metal-bearing pegmatite No.3 vein and related granites in the Keketuohai region, Altay mountains, northwest China[J]. Journal of Asian Earth Sciences,2006,27(1):61-77.
栾世伟,毛玉元,范良明. 可可托海地区稀有金属成矿与找矿[M]. 成都:成都科技大学出版社,1996.
BAKER D R. The escape of pegmatite dikes from granitic plutons: constraints from new models of viscosity and dike propagation[J].The Canadian Mineralogist,1998,36(2):255-263.
SELWAY J B, BREAKS F W, TINDLE A G. A review of rare-element (Li-Cs-Ta) pegmatite exploration techniques for the Superior Province, Canada, and large worldwide tantalum deposits[J]. Exploration and Mining Geology, 2005, 14(1/2/3/4): 1-30.
肖序常. 中国新疆地壳结构与地质演化[M]. 北京:地质出版社,2010.
何国琦, 韩宝福, 岳永军, 等. 中国阿尔泰造山带的构造分区和地壳演化[J]. 新疆地球科学, 1990(2):9-20.
SUN M, YUAN C, XIAO W J, et al. Zircon U-Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: progressive accretionary history in the early to middle Paleozoic[J]. Chemical Geology, 2008, 247(3): 352-383.
牛贺才,于学元,许继峰. 中国新疆阿尔泰晚古生代火山作用及成矿[M]. 北京:地质出版社,2006.
LONG X P, SUN M, YUAN C, et al. Detrital zircon age and Hf isotopic studies for metasedimentary rocks from the Chinese Altai: Implications for the Early Paleozoic tectonic evolution of the Central Asian Orogenic Belt[J]. Tectonics,2007,26(5): TC5015.
SENGOR, CELAL A M, NATAL'IN, et al. Turkic-type orogeny and its role in the making of the continental crust[J]. Annual Review of Earth & Planetary Sciences,1996,24:263-337.
CAI K D, SUN M, YUAN C, et al. Geological framework and Paleozoic tectonic history of the Chinese Altai, NW China: A review[J]. Russian Geology and Geophysics, 2011, 52: 1619-1633.
JIANG Y D, SCHULMANN K, KRŐNER A, et al. Neoproterozoic-Early Paleozoic Peri-Pacific accretionary evolution of the Mongolian collage system: insights from geochemical and U-Pb zircon data from the Ordovician sedimentary wedge in the Mongolian Altai[J]. Tectonics, 2017, 36(11): 2305-2331.
LONG X P, YUAN C, SUN M, et al. Detrital zircon ages and Hf isotopes of the early Paleozoic flysch sequence in the Chinese Altai, NW China: New constraints on depositional age, provenance and tectonic evolution [J]. Tectonophysics, 2010, 180(1): 213-231.
王星,蔺新望,赵端昌,等. 阿尔泰北部喀纳斯群碎屑岩锆石U-Pb同位素年龄及其意义[J]. 西北地质,2016,49(3):13-27.
张鑫,曲正钢. 中国阿尔泰基底性质研究:锆石Hf-O同位素证据[J]. 矿物学报,2020,40(5):529-538.
徐义刚,王强,唐功建,等. 弧玄武岩的成因:进展与问题[J]. 中国科学:地球科学,2020,50(12):1818-1844.
沈瑞峰,张辉,唐勇,等. 阿尔泰造山带古生代地层的地球化学特征及其对沉积环境的制约[J]. 地球化学,2015,44(1):43-60.
肖文交,宋东方,WINDLEY B F,等. 中亚增生造山过程与成矿作用研究进展[J]. 中国科学:地球科学,2019,49(10):1512-1545.
XU B, CHARVET J, CHEN Y, et al. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt[J]. Gondwana Research,2013,23(4):1342-1364.
CHARVET J, SHU L S, LAURENT-CHARVET S. Paleozoic structural and geodynamic evolution of eastern Tianshan (NW China): welding of the Tarim and Junggar plates[J]. Episodes,2007,30(3):162-186.
高俊,龙灵利,钱青,等.南天山:晚古生代还是三叠纪碰撞造山带?[J]. 岩石学报,2006,22(5):1049-1061.
LI J. Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific plate[J]. Journal of Asian Earth Sciences,2006,26(3/4):207-224.
HAN B F, HE G Q, WANG X C, et al. Late carboniferous collision between the Tarim and Kazakhstan-Yili terranes in the western segment of the South Tianshan Orogen, Central Asia, and implications for the Northern Xinjiang, western China[J]. Earth-Science Reviews,2011,109(3/4):74-93.
XIAO W J, WINDLEY B F, HUANG B C, et al. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia[J]. International Journal of Earth Sciences,2009,98(6):1189-1217.
XIAO W, WINDLEY B F, HAN C, et al. Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia[J]. Earth-Science Reviews,2018,186:94-128.
王涛,童英,李舢,等. 阿尔泰造山带花岗岩时空演变、构造环境及地壳生长意义——以中国阿尔泰为例[J]. 岩石矿物学杂志,2010,29(6):595-618.
董树文,张岳桥,李海龙,等. “燕山运动”与东亚大陆晚中生代多板块汇聚构造——纪念 “燕山运动”90周年[J]. 中国科学:地球科学,2019,49(6):913-938.
DOBRETSOV N L. Mantle plumes and their role in the formation of anorogenic granitoids[J]. Geologiya i Geofizika, 2003, 44(12): 1243-1261.
POTSELUEV A A, BABKIN D I, KOTEGOV V I. The Kalguty complex deposit, the Gorny Altai: Mineralogical and geochemical characteristics and fluid regime of ore formation[J]. Geology of Ore Deposits,2006,48(5):384-401.
朱永峰. 新疆的印支运动与成矿[J]. 地质通报,2007, 26(5): 510-519.
赵振华, 王中刚, 邹天人, 等. 阿尔泰花岗岩REE及O、Pb、Sr、Nd同位素组成及成岩类型[M]//涂光炽. 新疆北部固体地球科学新进展. 北京: 科学出版社,1993: 230-239.
JAHN B, WU F, CHEN B. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic[J]. Episodes,2000,23(2):82-92.
WANG T, JAHN B, KOVACH V P, et al. Nd-Sr isotopic mapping of the Chinese Altai and implications for continental growth in the Central Asian Orogenic Belt[J]. Lithos,2009,110(1/2/3/4):359-372.
王涛,黄河,宋鹏,等. 地壳生长及深部物质架构研究与问题: 以中亚造山带 (北疆地区) 为例[J]. 地球科学,2020,45(7):2326-2344.
TANG G, WANG Q, WYMAN D A, et al. Ridge subduction and crustal growth in the Central Asian Orogenic Belt: Evidence from late Carboniferous adakites and high-Mg diorites in the western Junggar region, northern Xinjiang (west China)[J]. Chemical Geology,2010,277(3/4):281-300.
TANG G J, WANG Q, WYMAN D A. et al. Crustal maturation through chemical weathering and crustal recycling revealed by Hf-O-B isotopes[J]. Earth and Planetary Science Letters, 2019, 524:115709.
赵振华,王强,熊小林,等. 新疆北部晚古生代地壳增生方式的多样性—来自富碱火成岩及埃达克岩[M]//中国科学院地球化学研究所和广州地球化学研究所.郭承基院士纪念文集.广州:广东科技出版社,2007: 110-124.
XIAO W J, HAN C M, YUAN C, et al. Transitions among Mariana-, Japan-, Cordillera- and Alaska-type arc systems and their final juxtapositions leading to accretionary and collisional orogenesis[J]. Geological Society London Special Publications, 2010, 338: 35-53.
XIAO W, ZHANG L, QIN K, et al. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): implications for the continental growth of central Asia[J]. American Journal of Science,2004,304(4):370-395.
SCHULMANN K, PATERSON S. Asian continental growth[J]. Nature Geoscience, 2011,4(12):827-829.
仝来喜,陈义兵,徐义刚,等. 阿尔泰超高温变泥质麻粒岩的锆石 U-Pb 年龄及其地质意义[J]. 岩石学报,2013,29(10):3435-3445.
WEI C, CLARKE G, TIAN W, et al. Transition of metamorphic series from the kyanite- to andalusite-types in the Altai orogen, Xinjiang, China: Evidence from petrography and calculated KMnFMASH and KFMASH phase relations[J]. Lithos,2007,96(3/4):353-374.
许志琴,王汝成,赵中宝,等. 试论中国大陆“硬岩型”大型锂矿带的构造背景[J]. 地质学报,2018,92(6):1091-1106.
陈毓川,刘德权,王登红,等. 新疆北准噶尔苦橄岩的发现及其地质意义[J]. 地质通报,2004,23(11):1059-1065.
张海祥,年贺才. 新疆北部晚古生代埃达克岩, 富铌玄武岩组合: 古亚洲洋板块南向俯冲的证据[J]. 高校地质学报,2004,10(1):106-113.
王强,赵振华,许继峰,等. 天山北部石炭纪埃达克岩-高镁安山岩-富 Nb 岛弧玄武质岩: 对中亚造山带显生宙地壳增生与铜金成矿的意义[J]. 岩石学报,2006,22(1):11-30.
赵振华,王强,熊小林,等. 新疆北部的富镁火成岩[J]. 岩石学报,2007,23(7):1696-1707.
ČERNÝ P. Rare-element granitic pegmatites. Part Ⅱ: Regional to global environments and petrogenesis[J]. Geoscience Canada,1991, 18: 68-81.
ČERNÝ P, ERCIT T S. The classification of granitic pegmatites revisited[J]. The Canadian Mineralogist,2005,43(6):2005-2026.
ČERNÝ P, LONDON D, NOVÁK M. Granitic pegmatites as reflections of their sources[J]. Elements,2012,8(4):289-294.
JAHNS R H, BURNHAM C W. Experimental studies of pegmatite genesis: Ⅰ. A model for the derivation and crystallization of granitic pegmatites[J]. Economic Geology,1969,64(8):843-864.
HULSBOSCH N, HERTOGEN J, DEWAELE S, et al. Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): Quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups[J]. Geochimica et Cosmochimica Acta,2014,132:349-374.
LONDON D. Ore-forming processes within granitic pegmatites[J]. Ore Geology Reviews,2018,101:349-383.
SIMMONS W B S, WEBBER K L. Pegmatite genesis: state of the art[J]. European Journal of Mineralogy,2008,20(4):421-438.
SIMMONS W B, FOORD E E, FALSTER A U, et al. Evidence for an anatectic origin of granitic pegmatites, western Maine, USA[J].Geol Soc Amer Ann Mtng Abstr Prog,1995,27:A411.
MARTINS T, RODA-ROBLES E, LIMA A, et al. Geochemistry and evolution of micas in the Barroso-Alvão pegmatite field, Northern Portugal[J]. The Canadian Mineralogist,2012,50(4):1117-1129.
MELLETON J, GLOAGUEN E, FREI D, et al. How are the emplacement of rare-element pegmatites, regional metamorphism and magmatism interrelated in the Moldanubian domain of the Variscan Bohemian Massif, Czech Republic?[J]. The Canadian Mineralogist,2012,50(6):1751-1773.
DEVEAUD S, MILLOT R, VILLAROS A. The genesis of LCT-type granitic pegmatites, as illustrated by lithium isotopes in micas[J]. Chemical Geology,2015,411:97-111.
文春华,罗小亚,陈剑锋,等. 湘东北幕阜山地区燕山期岩浆演化与稀有金属成矿的关系[J]. 中国地质调查,2019,6(6):19-28.
付小方,袁蔺平,王登红,等. 四川甲基卡矿田新三号稀有金属矿脉的成矿特征与勘查模型[J]. 矿床地质,2015,34(6):1172-1186.
朱炳泉,陈民杨,毛存孝,等. 新疆北部铅同位素省及部分层控矿床成因与化探评价[M]//涂光炽. 新疆北部固体地球科学新进展. 北京:科学出版社,1993:39-52.
LIU X, XU J, XIAO W, et al. The boundary between the Central Asian Orogenic belt and Tethyan tectonic domain deduced from Pb isotopic data[J]. Journal of Asian Earth Sciences,2015,113:7-15.
黄守民,崔燮祥. 新疆阿尔泰东部区域地球化学特征及成矿地质条件[J]. 新疆地质,1999,17(2): 137-144.
TAYLOR S R. Abundance of chemical elements in the continental crust: a new table[J]. Geochimica et Cosmochimica Acta,1964,28(8):1273-1285.
刘汉粮,聂兰仕,王学求,等. 中蒙跨境阿尔泰地区铍区域地球化学特征[J]. 地质与勘探,2019(1):95-102.
王学求,刘汉粮,王玮,等. 中国锂矿地球化学背景与空间分布: 远景区预测[J]. 地球学报,2020,41(6):797-806.
CHEN B, HUANG C, ZHAO H. Lithium and Nd isotopic constraints on the origin of Li-poor pegmatite with implications for Li mineralization[J]. Chemical Geology,2020,551:119769.
BARNES E M, WEIS D, GROAT L A. Significant Li isotope fractionation in geochemically evolved rare element-bearing pegmatites from the Little Nahanni Pegmatite Group, NWT, Canada[J]. Lithos,2012,132:21-36.
FAN J, TANG G, WEI G, et al. Lithium isotope fractionation during fluid exsolution: Implications for Li mineralization of the Bailongshan pegmatites in the West Kunlun, NW Tibet[J]. Lithos,2020,352:105236.
侯江龙,李建康,张玉洁,等. 四川甲基卡锂矿床花岗岩体 Li 同位素组成及其对稀有金属成矿的制约[J]. 地球科学,2018,43(6):2042-2054.
WEBSTER J D, THOMAS R, RHEDE D, et al. Melt inclusions in quartz from an evolved peraluminous pegmatite: Geochemical evidence for strong tin enrichment in fluorine-rich and phosphorus-rich residual liquids[J]. Geochimica et Cosmochimica Acta,1997,61(13):2589-2604.
FUERTES-FUENTE M, MARTIN-IZARD A, BOIRON M C, et al. P-T path and fluid evolution in the Franqueira granitic pegmatite, central Galicia, northwestern Spain[J]. The Canadian Mineralogist,2000,38(5):1163-1175.
DILL H G. The Hagendorf-Pleystein Province: the center of pegmatites in an ensialic orogeny [M]. Switzerland: Springer International Publishing, 2015: 1-465.
DILL H G. Pegmatites and aplites: Their genetic and applied ore geology[J]. Ore Geology Reviews,2015,69:417-561.
LV Z, ZHANG H, TANG Y, et al. Petrogenesis of syn-orogenic rare metal pegmatites in the Chinese Altai: Evidences from geology, mineralogy, zircon U-Pb age and Hf isotope[J]. Ore Geology Reviews,2018,95:161-181.
ZAGORSKY V Y, VLADIMIROV A G, MAKAGON V M, et al. Large fields of spodumene pegmatites in the settings of rifting and postcollisional shear-pull-apart dislocations of continental lithosphere[J]. Russian Geology and Geophysics,2014,55(2):237-251.
SIMMONS W B, FALSTER A U. Evidence for an anatectic origin of an LCT type pegmatite: Mt. Mica, Maine[C]. Colorado: Second Eugene E. Foord Pegmatite Symposium, 2016: 103.
DILL H G. The CMS classification scheme (chemical composition-mineral assemblage-structural geology)-linking geology to mineralogy of pegmatitic and aplitic rocks[J]. Journal of Mineralogy and Geochemistry,2016,193:231-263.
MÜLLER A, ROMER R L, SZUSZKIEWICZ A, et al. Can pluton-related and pluton-unrelated granitic pegmatites be distinguished by their chemistry?[C]. Colorado:Second Eugene E. Foord Pegmatite Symposium, 2016: 67-69.
TUTTLE O F, BOWEN N L. Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O[J]. Memoir of Geological Society of America,1958,74.DOI:10.1130/MEM74-p1http://dx.doi.org/10.1130/MEM74-p1.
LONDON D A. petrologic assessment of internal zonation in granitic pegmatites[J]. Lithos, 2014, 184: 74-104.
SHEARER C K, PAPIKE J J, JOLLIFF B L. Petrogenetic links among granites and pegmatites in the Harney Peak rare-element granite-pegmatite system, Black Hills, South Dakota[J]. The Canadian Mineralogist,1992,30(3):785-809.
PATIÑO-DOUCE A E, HARRIS N. Experimental constraints on Himalayan anatexis[J]. Journal of Petrology,1998,39(4):689-710.
GAO L, ZENG L, ASIMOW P D. Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: The Himalayan leucogranites[J]. Geology,2017,45(1):39-42.
黄永胜,张辉,吕正航,等. 新疆阿尔泰二叠纪、三叠纪伟晶岩侵位深度研究: 来自流体包裹体的指示[J]. 矿物学报,2016,36(4):571-585.
LONDON D. Pegmatites[M]. Ottawa:Mineralogical Association of Canada,2008.
金兹堡,阿别利琴(赵振华译. 稀有金属矿床及其与地壳的岩浆作用和构造的关系[J].地质地球化学,1974(9):18-22.
朱金初, 吴长年, 刘昌实, 等.新疆阿尔泰可可托海3号伟晶岩脉岩浆-热液演化和成因[J]. 高校地质学报, 2000, 6(1): 40-52.
THOMAS R, DAVIDSON P. Revisiting complete miscibility between silicate melts and hydrous fluids, and the extreme enrichment of some elements in the supercritical state — consequences for the formation of pegmatites and ore deposits[J]. Ore Geology Reviews,2016,72:1088-1101.
张辉,刘丛强,赵振华. 过铝质岩浆体系中稀土四重效应及其形成机制[M]. 广州:广东科技出版社,2007:125-137.
赵振华,增田彰正,夏巴尼. 稀有金属花岗岩的稀土元素四分组效应[J]. 地球化学,1992(3):221-233.
ZHAO Z, XIONG X, HAN X, et al. Controls on the REE tetrad effect in evidence from the Qianlishan and Baerzhe granites, China[J]. Geochemical Journal,2002,36(6):527-543.
IRBER W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites[J]. Geochimica et Cosmochimica Acta,1999,63(3/4):489-508.
唐勇,张辉,吕正航. 不同成因锆石阴极发光及微量元素特征: 以新疆阿尔泰地区花岗岩和伟晶岩为例[J]. 矿物岩石,2012,32(1):8-15.
吕正航,张辉,唐勇. 稀有金属伟晶岩锆石的 REE 特征, Zr/Hf 和 Y/Ho 比值对岩浆-热液演化过程的指示[J]. 矿物学报,2013,33(Suppl 2):235.
周起凤,秦克章,唐冬梅,等. 阿尔泰可可托海 3 号脉伟晶岩型稀有金属矿床云母和长石的矿物学研究及意义[J]. 岩石学报,2013,29(9):3004-3022.
伍守荣,赵景宇,张新,等. 新疆阿尔泰可可托海 3 号伟晶岩脉岩浆-热液过程: 来自电气石化学组成演化的证据[J]. 矿物学报,2015,35(3):299-308.
JOHNSON M C, PLANK T. Dehydration and melting experiments constrain the fate of subducted sediments[J]. Geochemistry, Geophysics, Geosystems,1999. DOI:10.1029/1999GC000014http://dx.doi.org/10.1029/1999GC000014.
PAQUIN J, ALTHERR R, LUDWIG T. Li-Be-B systematics in the ultrahigh-pressure garnet peridotite from Alpe Arami (Central Swiss Alps): Implications for slab-to-mantle wedge transfer [J]. Earth and Planetary Science Letter, 2004, 218: 507-519.
ZHOU Q, QIN K, TANG D, et al. Formation age and evolution time span of the Koktokay No. 3 pegmatite, Altai, NW China: evidence from U-Pb zircon and 40Ar-39Ar muscovite ages [J]. Resource Geology,2015,65(3):210-231.
WANG L, MA C, ZHANG C, et al. Genesis of leucogranite by prolonged fractional crystallization: a case study of the Mufushan complex, South China[J]. Lithos,2014,206:147-163.
许畅,李建康,施光海,等. 幕阜山南缘似斑状黑云母花岗岩锆石 U-Pb 年龄、Hf 同位素组成及其地质意义[J]. 矿床地质,2019,38(5):1053-1068.
周芳春,黄志飚,刘翔,等. 湖南仁里铌钽矿床辉钼矿 Re-Os 同位素年龄及其地质意义[J]. 大地构造与成矿学,2020,44(3):476-485.
韩宝福. 中俄阿尔泰山中生代花岗岩与稀有金属矿床的初步对比分析[J]. 岩石学报,2008,24(4):655-660.
申萍,潘鸿迪,李昌昊,等. 中哈俄阿尔泰稀有金属矿床时空分布、成因及成矿规律[J]. 地球科学与环境学报,2021,43(3):487-505.
0
浏览量
1
下载量
10
CSCD
关联资源
相关文章
相关作者
相关机构