1.天琴计划”教育部重点实验室,中山大学天琴中心,天琴前沿科学中心,国家航天局引力波 研究中心,广东 珠海 519082
2.中山大学物理与天文学院,广东 珠海 519082
3.华中科技大学物理学院,湖北 武汉 430074
4.航天东方红卫星有限公司,北京 100094
5.中国科学院云南天文台,云南 昆明 650011
6.哈尔滨工业大学能源科学与工程学院,黑龙江 哈尔滨 150001
7.北京控制工程研究所,北京 100094
8.东北大学理学院,辽宁 沈阳 110004
9.贵州大学电气工程学院,贵州 贵阳 550025
10.南京大学电子科学与工程学院,江苏 南京 210093
11.上海交通大学机械与动力工程学院,上海 200240
12.深圳技术大学工程物理学院, 广东 深圳 518118
13.武汉大学电子信息学院,湖北 武汉 430072
14.西北工业大学航空航天学院,陕西 西安710072
15.西南大学物理科学与技术学院,重庆 400715
16.中国科学院紫金山天文台,江苏 南京 210023
17.中山大学航空航天学院,广东 广州 510006
18.冲绳科学技术大学院大学, 日本 冲绳 951-8073
罗俊(1956年生),男;研究方向:引力实验;E-mail:junluo@mail.sysu.edu.cn
梅健伟(1980年生),男;研究方向:引力及黑洞物理;E-mail:meijw@mail.sysu.edu.cn
纸质出版日期:2021-01-25,
网络出版日期:2021-01-13,
收稿日期:2020-12-23,
录用日期:2020-12-28
扫 描 看 全 文
罗俊,艾凌皓,艾艳丽等.天琴计划简介[J].中山大学学报(自然科学版),2021,60(01):1-19.
LUO Jun,AI Linghao,AI Yanli,et al.A brief introduction to the TianQin project[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):1-19.
罗俊,艾凌皓,艾艳丽等.天琴计划简介[J].中山大学学报(自然科学版),2021,60(01):1-19. DOI: 10.13471/j.cnki.acta.snus.2020.12.23.2020B154.
LUO Jun,AI Linghao,AI Yanli,et al.A brief introduction to the TianQin project[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):1-19. DOI: 10.13471/j.cnki.acta.snus.2020.12.23.2020B154.
天琴计划预期于2035年左右发射并部署边长约17万公里的等边三角形卫星星座,构成一个引力波天文台—天琴。天琴将对10
-4
~1 Hz频段的引力波进行探测,为人类描绘一幅更全面的宇宙图景。在本文中,我们对天琴计划的背景和提出过程、天琴的主要探测对象和主要科学目标、天琴需要攻克的核心关键技术问题、天琴计划技术路线图及进展等进行介绍,以方便更多人加入这一项富有挑战而又激动人心的工作。
The TianQin project aims to launch and deploy around 2035 an equilateral triangular constellation with each side measuring 170 000 kilometers, forming a gravitational wave observatory: TianQin. TianQin aims to detect gravitational waves in the frequency range 10
-4
~1 Hz and to draw a more comprehensive picture of the universe for mankind. In this article, we introduce the background and the proposing process, the major gravitational wave sources and scientific objectives, the key technology problems to be solved, the technology roadmap, and the current progress of the TianQin project, so as to facilitate more people to join in this challenging and exciting work.
天琴计划空间引力波探测引力波
TianQinspace-based gravitational wave detectiongravitational waves
EINSTEIN A. Approximative integration of the field equations of gravitation[C]// Berlin:Math Phys,1916:688-696.
EINSTEIN A. Uber gravitation swellen[C]// Sitzungsberichte der Preusischen Akademie der Wissenschaften, 1918:154-167.
KENNEFICK D. Traveling at the speed of thought: Einstein and the quest for gravitational waves[M]. Princeton University Press, 2016.
CHEN C M, NESTER J M, NI W T. A brief history of gravitational wave research[J]. Chinese Journal of Physics, 2016, 55(1):142-169.
WEISBERG J M , NICE D J , TAYLOR A J H . Timing measurements of the relativistic binary pulsar PSR B1913+16[J]. The Astrophysical Journal, 2010, 722(2):1030.
LIGO Scientific Collaboration, Virgo Collaboration. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Retters, 2016, 116(6): 061102.
WEBER J. Evidence for discovery of gravitational radiation[J]. Physical Review Letters, 1969, 22(24): 1320-1324.
AUFMUTH P, DANZMANN K. Gravitational wave detectors[J]. New Journal of Physics, 2005, 7(1): 202.
ASTONE P,BONIFAZI P, COSMELLI C,et al. Methods and results of the IGEC search for burst gravitational waves in the years 1997–2000[J]. Physical Review D, 2003, 68(2): 022001.
IGEC-2 Collaboration. Results of the IGEC-2 search for gravitational wave bursts during 2005[J]. Physical Review D, 2007, 76(10): 102001.
ACERNESE F, ALSHOURBAGY M, AMICO P, et al. First joint gravitational wave search by the auriga-explorer-nautilus-Virgo collaboration[J]. Classical and Quantum Gravity, 2008, 25(20): 205007.
ASTONE P, BALLANTINI R, BABUSCI D, et al. Explorer and nautilus gravitational wave detectors: a status report[J]. Classical and Quantum Gravity, 2008, 25(11): 114048.
GERSTENSHTEIN M E, PUSTOVOIT V I. On the detection of low frequency gravitational waves[J]. Journal of Experimental and Theoretical Physics, 1963, 16(2): 433-435.
ABBOTT B P, et al(LIGO Scientific Collaboration and Virgo Collaboration). GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence[J]. Physical Review Letters, 2016, 116(24): 241103.
ABBOTT B P, et al(LIGO Scientific Collaboration and Virgo Collaboration). Binary black hole mergers in the first advanced LIGO observing run[J]. Physical Review X, 2016, 6(4): 041015.
ABBOTT B P, et al(LIGO Scientific Collaboration and Virgo Collaboration). GW170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2[J]. Physical Review Letters, 2017, 118(22): 221101.
ABBOTT B P, ABBOTT R,ABBOTT T D,et al(LIGO Scientific Collaboration and Virgo Collaboration). GW170608: Observation of a 19 solar-mass binary black hole coalescence[J]. The Astrophysical Journal Letters, 2017, 851(2): L35.
ABBOTT B P, et al(LIGO Scientific Collaboration and Virgo Collaboration). GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence[J]. Physical Review Letters, 2017, 119(14): 141101.
ABBOTT B P, et al. Multi-messenger observations of a binary neutron star merger[J]. Astrophys J, 2017, 848(2): L12.
ABBOTT B P, et al(LIGO Scientific Collaboration and Virgo Collaboration). GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs[J]. Physical Review X, 2019, 9(3): 031040.
DROUT M R, PIRO A L, SHAPPEE B J, et al. Light curves of the neutron star merger GW170817/SSS17a: Implications for r-process nucleosynthesis[J]. Science, 2017, 358(6370): 1570-1574.
ABBOTT R, et al(LIGO Scientific Collaboration and Virgo Collaboration). GWTC-2: Compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run [EB/OL]. https://arxiv.org/abs/2010.14527https://arxiv.org/abs/2010.14527.
ABBOTT B P, ABBOTT R,ABBOTT T D,et al(LIGO Scientific Collaboration and Virgo Collaboration). GW190425: Observation of a compact binary coalescence with total mass∼ 3.4 M⊙[J]. The Astrophysical Journal Letters, 2020, 892(1): L3.
ABBOTT R, ABBOTT T D,ABRAHAM S,et al(LIGO Scientific Collaboration and Virgo Collaboration). GW190412: Observation of a binary-black-hole coalescence with asymmetric masses[EB/OL]. https://arxiv.org/abs/2004.08342https://arxiv.org/abs/2004.08342.
ABBOTT R, ADHIKARI R X, ANANYEVA S, et al(LIGO Scientific Collaboration and Virgo Collaboration). GW190814: gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object[J]. The Astrophysical Journal Letters, 2020, 896(2): L44.
ABBOTT R, ABBOTT T D,ABRAHAM S,et al(LIGO Scientific Collaboration and Virgo Collaboration). GW190521: A binary black hole merger with a total mass of 150 M⊙[J]. Physical Review Letters, 2020, 125(10): 101102.
DESVIGNES G, CABALLERO R N, LENTATI L, et al. High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array[J]. Monthly Notices of the Royal Astronomical Society, 2016, 458(3): 3341-3380.
MANCHESTER R N, HOBBS G, BAILES M, et al. The parkes pulsar timing array project[M]. Publications of the Astronomical Society of Australia, 2013, 30:17.
ARZOUMANIAN Z, BRAZIER A, BURKE-SPOLAOR S, et al. The NANOGrav 11-year data set: high-precision timing of 45 millisecond pulsars[J]. The Astrophysical Journal Supplement Series, 2018, 235(2): 37.
VERBIEST J P W, LENTATI L, HOBBS G, et al. The international pulsar timing array: first data release[J]. Monthly Notices of the Royal Astronomical Society, 2016, 458(2): 1267-1288.
ARZOUMANIAN Z, BAKER P T, BLUMER H,et al(The NANOGrav Collaboration). The NANOGrav 12.5-year data set: search for an isotropic stochastic gravitational-wave background[EB/OL]. https://arxiv.org/abs/2009.04496https://arxiv.org/abs/2009.04496.
LAZIO T J W. The square kilometre array pulsar timing array[J]. Classical and Quantum Gravity, 2013, 30(22): 224011.
HOBBS G, DAI S, MANCHESTER R N, et al. The role of FAST in pulsar timing arrays[EB/OL]. https://arxiv.org/abs/1407.0435https://arxiv.org/abs/1407.0435.
ADE P A R, AHMED Z, AIKIN R W,et al(Keck Array and BICEP2 Collaborations). Constraints on primordial gravitational waves using planck, WMAP, and new BICEP2/Keck observations through the 2015 season[J]. Physical Review Letters, 2018, 121(22): 221301.
LI H, LI S Y, LIU Y, et al. Probing primordial gravitational waves: ali CMB polarization telescope[J]. National Science Review, 2019, 6(1): 145-154.
FALLER J E, BENDER P L, HALL J L, et al. An antenna for laser gravitational-wave observations in space[J]. Advances in Space Research, 1989, 9(9): 107-111.
DANZMANN K, LISA Study Team. LISA: laser interferometer space antenna for gravitational wave measurements[J]. Classical and Quantum Gravity, 1996, 13(11A): A247.
DANZMANN K for LISA Study Team. LISA-an ESA cornerstone mission for a gravitational wave observatory[J]. Classical and Quant um Gravity, 1997, 14(6): 1399.
ESA-L.The 3 gravitational wave mission final report[R]. Gravitational Observatory Advisory Team, 2016.
AMARO-SEOANE P, AUDLEY H, BABAK S,et al(LISA Collaboration). Laser interferometer space antenna[EB/OL]. https://arxiv.org/abs/1702.00786https://arxiv.org/abs/1702.00786.
ARMANO M, AUDLEY H, BAIRD J, et al. Beyond the required LISA free-fall performance: new LISA pathfinder results down to 20 μHz[J]. Physical Review Letters, 2018, 120(6): 061101.
The Europeau Space Agency.Gravitational wave mission selected, planet-hunting mission moves forward[EB/OL].https://www.esa.int/Science_Exploration/Space_Science/Gravitational_wave_mission_selected_planet-hunting_mission_moves_forwardhttps://www.esa.int/Science_Exploration/Space_Science/Gravitational_wave_mission_selected_planet-hunting_mission_moves_forward.
SATO S, KAWAMURA S, ANDO M, et al. The status of DECIGO[C]// Journal of Physics: Conference Series. IOP Publishing, 2017, 840(1): 012010.
ISOYAMA S, NAKANO H, NAKAMURA T. Multiband gravitational-wave astronomy: observing binary inspirals with a decihertz detector, B-DECIGO[J]. Progress of Theoretical and Experimental Physics, 2018(7): 073E01.
KAWAMURA S, ANDO M, SETO N, et al. Current status of space gravitational wave antenna DECIGO and B-DECIGO[EB/OL]. https://arxiv.org/abs/2006.13545https://arxiv.org/abs/2006.13545.
樊军辉, 谢献春, 王洪光. 广东天文八十年[M].广州:华南理工大学出版社,2012.
FAN J H, XIE X C, WANG H G. Eighty years of astronomy in guangdong[M]. Guangzhou:South China University of Technology Press , 2012.
GONG X, XU S, BAI S, et al. A scientific case study of an advanced LISA mission[J]. Classical and Quantum Gravity, 2011, 28(9): 094012.
GONG X, LAU Y K, XU S, et al. Descope of the ALIA mission[C]// Journal of Physics: Conference Series. IOP Publishing, 2015, 610(1): 012011.
NI W T. ASTROD-GW: Overview and progress[J]. International Journal of Modern Physics D, 2013, 22(1): 1341004.
LUO J, CHEN L S, DUAN H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 2016, 33(3): 035010.
YE B, ZHANG X, ZHOU M, et al. Optimizing orbits for TianQin [J]. Int J Mod Phys D, 2019, 28: 1950121.
TAN Z, YE B, ZHANG X. Impact of orbital orientations and radii on TianQin constellation stability[J]. Int J Mod Phys D, 2020, 29: 2050056.
YE B, ZHANG X, DING Y, et al. Eclipse avoidance in TianQin orbit selection[J]. 2020, submitted.
ZHANG X, LUO C, JIAO L, et al. Effect of Earth-Moon's gravity on TianQin's range acceleration noise[J]. 2020, submitted.
WANG H T, JIANG Z, SESANA A, et al. Science with the TianQin observatory: Preliminary results on massive black hole binaries[J]. Physical Review D, 2019, 100(4): 043003.
FENG W F, WANG H T, HU X C, et al. Preliminary study on parameter estimation accuracy of supermassive black hole binary inspirals for TianQin[J]. Physical Review D, 2019, 99(12): 123002.
SHI C F, BAO J H, WANG H T, et al. Science with the TianQin observatory: Preliminary results on testing the no-hair theorem with ringdown signals[J]. Physical Review D, 2019, 100(4): 044036.
BAO J H, SHI C F, WANG H T, et al. Constraining modified gravity with ringdown signals: An explicit example[J]. Physical Review D, 2019, 100(8): 084024.
LIU S, HU Y M, ZHANG J D, et al. Science with the TianQin observatory: Preliminary results on stellar-mass binary black holes[J]. Physical Review D, 2020, 101(10): 103027.
HUANG S J, HU Y M, KOROL V, et al. Science with the TianQin observatory: preliminary results on galactic double white dwarf binaries[J]. Physical Review D, 2020, 102(6): 063021.
FAN H M, HU Y M, BARAUSSE E, et al. Science with the TianQin observatory: Preliminary result on extreme-mass-ratio inspirals[J]. Physical Review D, 2020, 102(6): 063016.
HU Y M, MEI J W, LUO J.Science prospects for space-borne gravitational-wave missions[J]. National Science Review, 2017, 4(5): 683-684.
NELEMANS G. Galactic binaries with eLISA[C]// ASP Conference Series, 2013, 467:27-36.
REBASSA-MANSERGAS A, TOONEN S, KOROL V, et al. Where are the double-degenerate progenitors of Type Ia supernovae?[J]. Monthly Notices of the Royal Astronomical Society, 2019, 482(3): 3656-3668.
ADAMS M R, CORNISH N J, LITTENBERG T B. Astrophysical model selection in gravitational wave astronomy[J]. Physical Review D, 2012, 86(12): 124032.
KOROL V, ROSSI E M, BARAUSSE E. A multimessenger study of the Milky Way’s stellar disc and bulge with LISA, Gaia, and LSST[J]. Monthly Notices of the Royal Astronomical Society, 2019, 483(4): 5518-5533.
LITTENBERG T B, YUNES N. Binary white dwarfs as laboratories for extreme gravity with LISA[J]. Classical and Quantum Gravity, 2019, 36(9): 095017.
PHILIPPOZ L, JETZER P. Detecting additional polarization modes with LISA[C]//Journal of Physics: Conference Series, 2017, 840: 012057.
KUPFER T, KOROL V, SHAH S, et al. LISA verification binaries with updated distances from Gaia Data Release 2[J]. Monthly Notices of the Royal Astronomical Society, 2018, 480(1): 302-309.
STROHMAYER T E. Precision X-ray timing of RX J0806. 3+ 1527 with chandra: Evidence for gravitational radiation from an ultracompact binary[J]. The Astrophysical Journal, 2005, 627(2): 920.
WANG B, LIU D. The formation of neutron star systems through accretion-induced collapse in white-dwarf binaries[EB/OL]. https://arxiv.org/abs/2005.01880https://arxiv.org/abs/2005.01880.
RODRIGUEZ J F, RUEDA J A, RUFFINI R, et al. Chirping compact stars: gravitational radiation and detection degeneracy with binary systems. A conceptual pathfinder for space-based gravitational-wave observatories[EB/OL]. https://arxiv.org/abs/1907.10532https://arxiv.org/abs/1907.10532.
ABBOTT R, ABBOTT T D, ABRAHAM S, et al. Population properties of compact objects from the second LIGO-Virgo gravitational-wave transient catalog[EB/OL]. https://arxiv.org/abs/2010.14533https://arxiv.org/abs/2010.14533.
SESANA A. Prospects for multiband gravitational-wave astronomy after GW150914[J]. Physical Review Letters, 2016, 116(23): 231102.
ABBOTT B P, ABBOTT R,ABBOTT T D,et al(LIGO Scientific Collaboration and Virgo Collaboration). Binary black hole population properties inferred from the first and second observing runs of advanced LIGO and advanced Virgo[J]. The Astrophysical Journal Letters, 2019, 882(2): L24.
CHEN X, AMARO-SEOANE P. Revealing the formation of stellar-mass black hole binaries: The Need for Deci-Hertz gravitational-wave observatories[J]. The Astrophysical Journal Letters, 2017, 842(1): L2.
SAMSING J, D’ORAZIO D J, KREMER K, et al. Single-single gravitational-wave captures in globular clusters: Eccentric deci-Hertz sources observable by DECIGO and Tian-Qin[J]. Physical Review D, 2020, 101(12): 123010.
RANDALL L, XIANYU Z Z. Eccentricity without measuring eccentricity: discriminating among stellar mass black hole binary formation channels[EB/OL]. https://arxiv.org/abs/1907.02283https://arxiv.org/abs/1907.02283.
LYNDEN-BELL D, REES M J. On quasars, dust and the galactic centre[J]. Monthly Notices of the Royal Astronomical Society, 1971, 152(4): 461-475.
SOLTAN A. Masses of quasars[J]. Monthly Notices of the Royal Astronomical Society, 1982, 200(1): 115-122.
KORMENDY J, RICHSTONE D. Inward bound—the search for supermassive black holes in galactic nuclei[J]. Annual Review of Astronomy and Astrophysics, 1995, 33(1): 581-624.
GÜLTEKIN K, RICHSTONE D O, GEBHARDT K, et al. The M-σ and ML relations in galactic bulges, and determinations of their intrinsic scatter[J]. The Astrophysical Journal, 2009, 698(1): 198.
BERTI E, YAGI K, YUNES N. Extreme gravity tests with gravitational waves from compact binary coalescences:(I) inspiral-merger[J]. General Relativity and Gravitation, 2018, 50(4): 46.
WOODS T E, AGARWAL B, BROMM V, et al. Titans of the early universe: The prato statement on the origin of the first supermassive black holes[EB/OL]. https://arxiv.org/abs/1810.12310https://arxiv.org/abs/1810.12310.
BARAUSSE E. The evolution of massive black holes and their spins in their galactic hosts[J]. Monthly Notices of the Royal Astronomical Society, 2012, 423(3): 2533-2557.
KLEIN A, BARAUSSE E, SESANA A, et al. Science with the space-based interferometer eLISA: Supermassive black hole binaries[J]. Physical Review D, 2016, 93(2): 024003.
JIANG Z, WANG J, GAO L, et al. GABE: galaxy assembly with binary evolution[J]. Research in Astronomy and Astrophysics, 2019, 19(10): 151.
LIU H, ZHANG C, GONG Y G, et al. Exploring non-singular black holes in gravitational perturbations[EB/OL]. https://arxiv.org/abs/2002.06360https://arxiv.org/abs/2002.06360.
STOTT M J, MARSH D J E. Black hole spin constraints on the mass spectrum and number of axionlike fields[J]. Physical Review D, 2018, 98(8): 083006.
SCHÖDEL R, FELDMEIER A, NEUMAYER N, et al. The nuclear cluster of the Milky Way: our primary testbed for the interaction of a dense star cluster with a massive black hole[J]. Classical and Quantum Gravity, 2014, 31(24): 244007.
BARACK L, CUTLER C. Using LISA extreme-mass-ratio inspiral sources to test off-Kerr deviations in the geometry of massive black holes[J]. Physical Review D, 2007, 75(4): 042003.
de MEENT MVAN. Gravitational self-force on eccentric equatorial orbits around a Kerr black hole[J]. Physical Review D, 2016, 94(4): 044034.
BABAK S, GAIR J, SESANA A, et al. Science with the space-based interferometer LISA. V. Extreme mass-ratio inspirals[J]. Physical Review D, 2017, 95(10): 103012.
TAMANINI N, CAPRINI C, BARAUSSE E, et al. Science with the space-based interferometer eLISA. III: Probing the expansion of the Universe using gravitational wave standard sirens[J]. Journal of Cosmology and Astroparticle Physics, 2016(4): 002.
GUO H K, SINHA K, SUN C. Probing boson stars with extreme mass ratio inspirals[J]. Journal of Cosmology and Astroparticle Physics, 2019(9): 032.
WANG Y Y, WANG F Y, ZOU Y C, et al. A bright electromagnetic counterpart to extreme mass ratio inspirals[J]. The Astrophysical Journal Letters, 2019, 886(1): L22.
HAN W B, ZHONG X Y, CHEN X, et al. Very-Extreme-mass-ratio gravitational wave bursts in the Galaxy and neighbors for space-borne detectors[EB/OL]. https://arxiv.org/abs/2004.04016https://arxiv.org/abs/2004.04016.
CAPRINI C, FIGUEROA D G. Cosmological backgrounds of gravitational waves[J]. Classical and Quantum Gravity, 2018, 35(16): 163001.
LIANG Z C,et al. In preparation.
DEV P S B, FERRER F, ZHANG Y, et al. Gravitational waves from first-order phase transition in a simple axion-like particle model[J]. Journal of Cosmology and Astroparticle Physics, 2019(11): 006.
BIAN L G, CHENG W, GUO H K, et al. Gravitational waves triggered by BL charged hidden scalar and leptogenesis[EB/OL].https://arxiv.org/abs/1907.13589https://arxiv.org/abs/1907.13589.
DI BARI P, MARFATIA D, ZHOU Y L. Gravitational waves from neutrino mass and dark matter genesis[EB/OL]. https://arxiv.org/abs/2001.07637https://arxiv.org/abs/2001.07637.
BIAN L G, WU Y C, XIE K P. Electroweak phase transition with composite Higgs models: calculability, gravitational waves and collider searches[J]. Journal of High Energy Physics, 2019(12): 28.
HUANG W C, SANNINO F, WANG Z W. Gravitational waves from Pati-Salam dynamics[EB/OL]. https://arxiv.org/abs/2004.02332https://arxiv.org/abs/2004.02332.
KING S F, PASCOLI S, TURNER J, et al. Gravitational waves and proton decay: complementary windows into GUTs[EB/OL]. https://arxiv.org/abs/2005.13549https://arxiv.org/abs/2005.13549.
LIN J, GAO Q, GONG Y, et al. Primordial black holes and secondary gravitational waves from k and G inflation[J]. Physical Review D, 2020, 101(10): 103515.
DREES M, XU Y. Overshooting, critical higgs inflation and second order gravitational wave signatures[EB/OL]. https://arxiv.org/abs/1905.13581https://arxiv.org/abs/1905.13581.
DI H R, GONG Y G. Primordial black holes and second order gravitational waves from ultra-slow-roll inflation[J]. Journal of Cosmology and Astroparticle Physics, 2018(7): 007.
LU Y Z, GONG Y G, YI Z, et al. Constraints on primordial curvature perturbations from primordial black hole dark matter and secondary gravitational waves[J]. Journal of Cosmology and Astroparticle Physics, 2019(12): 031.
LIN J, GAO Q, GONG Y, et al. Primordial black holes and secondary gravitational waves from k and G inflation[J]. Physical Review D, 2020, 101(10): 103515.
WANG L F, ZHAO Z W, ZHANG J F, et al. A preliminary forecast for cosmological parameter estimation with gravitational-wave standard sirens from TianQin[J]. Journal of Cosmology and Astroparticle Physics, 2020(11): 012.
LINGFENG L U, YING LIU, HUIZONG D, et al. Numerical simulations of the wavefront distortion of inter-spacecraft laser beams caused by solar wind and magnetospheric plasmas[J]. Plasma Science and Technology, 2020, 22(11): 115301.
YEH H C, YAN Q Z, LIANG Y R, et al. Intersatellite laser ranging with homodyne optical phase locking for Space Advanced Gravity Measurements mission[J]. Review of Scientific Instruments, 2011, 82(4): 044501.
LIANG Y R, DUAN H Z, XIAO X L, et al. Note: Inter-satellite laser range-rate measurement by using digital phase locked loop[J]. Review of Scientific Instruments, 2015, 86(1): 016106.
LUO Y, LI H, YEH H C, et al. A self-analyzing double-loop digital controller in laser frequency stabilization for inter-satellite laser ranging[J]. Review of Scientific Instruments, 2015, 86(4): 044501.
ZHANG J Y, MING M, JIANG Y Z, et al. Inter-satellite laser link acquisition with dual-way scanning for space advanced gravity measurements mission[J]. Review of Scientific Instruments, 2018, 89(6): 064501.
LIANG Y R. Note: a new method for directly reducing the sampling jitter noise of the digital phasemeter[J]. Review of Scientific Instruments, 2018, 89(3): 036106.
SU W, WANG Y, ZHOU Z B, et al. Analyses of residual accelerations for TianQin based on the global MHD simulation[J]. Classical and Quantum Gravity, 2020, 37(18): 185017.
BAI Y, LI Z, HU M, et al. Research and development of electrostatic accelerometers for Space Science Missions at HUST [J]. Sensors, 2017, 17(9): 1943.
PEI S X, LIU L, WU S C, et al. Location effect and adjustment scheme of the translation-tilt compensation bench for accelerometer performance investigation[J]. Classical and Quantum Gravity, 2019, 36(23): 235023.
YANG F, BAI Y, HONG W, et al. Investigation of charge management using UV LED device with a torsion pendulum for TianQin[J]. Classical and Quantum Gravity, 2020, 37(11): 115005.
李永, 刘旭辉, 汪旭东. 空间极小推力宽范围可调推进技术研究进展[J]. 空间控制技术与应用, 2019, 45(6): 23-38.
LI Y, LIU X H, WANG X D. Review and prospect on the large-range thrust throttling technology with extremely small thrust [J]. Aerospace Control and Application, 2019, 45(6): 23-38.
于达仁, 崔凯, 刘辉, 等. 用于引力波探测的微牛级霍尔电推进技术[J]. 哈尔滨工业大学学报, 2020, 52(6):171-181.
YU D R, CUI K, LIU H, et al. Micro-newton hall electric propulsion technology for gravitational wave detection[J]. Journal of Harbin Institute of Technology, 2020, 52(6):171-181.
CUI K, LIU H, JIANG W J, et al. Effects of cusped field thruster on the performance of drag-free control system[J]. Acta Astronaut, 2018(144):193-200.
SONG P Y, SUN L M, KUANG S Y, et al. Micro-Newton electrospray thrusters for China’s space-borne gravitational wave detection mission (TianQin)[C]// IEPC,2019(A):284.
胡明, 李洪银,周泽兵. 无拖曳控制技术及其应用[J]. 载人航天, 2013, 19(2): 61-69.
HU M, LI H Y, ZHOU Z B. Drag-free control technology and its applications [J]. Manned Space Flight, 2013, 19(2):61-69.
李洪银.下一代重力卫星新型无拖曳与姿态控制系统研究[D]. 武汉:华中科技大学, 2017.
LI H Y. Research of drag-free and attitude control system for the next generation gravimetric satellite[D]. Wuhan: Huazhong University of Science and Technology, 2017.
LI H , BAI Y, HU M, et al. A novel controller design for the next generation space electrostatic accelerometer based on disturbance observation and rejection[J]. Sensors, 2017, 17(1): 21.
郑浩颖. 天琴卫星的空间外热流分析与隔离控制研究[D].广州:中山大学, 2020.
ZHENG H Y. Study on heat flow analysis and isolation control of TianQin satellite[D]. Guangzhou: Sun Yat-sen University, 2020.
王磊. 天琴计划地面模拟设备中的10mK级温度测量研究[D]. 广州: 中山大学, 2020.
WANG L. Study on 10mK temperature measurement in ground simulation equipment of TianQin project[D]. Guangzhou: Sun Yat-sen University, 2020.
LIAN X B, ZHANG J X, WANG J H, et al. State and disturbance estimation for test masses of drag-free satellites based on self-recurrent wavelet neural network[EB/OL]. Advances in Space Research, 2020. https://doi.org/10.1016/j.asr.2020.09.014https://doi.org/10.1016/j.asr.2020.09.014.
LIAN X B, ZHANG J X, YANG J K, et al. The determination for ideal release point of test masses in drag-free satellites for the detection of gravitational waves[EB/OL]. Advances in Space Research, 2020. https://doi.org/10.1016/j.asr.2020.09.030https://doi.org/10.1016/j.asr.2020.09.030.
YI B, GU D, CHANG X, et.al. Integrating BDS and GPS for precise relative orbit determination of LEO formation flying[J]. Chinese Journal of Aeronautics, 2018, 31(10):2013-2022.
SHAO K, GU D, JU B, et al. Analysis of Tiangong-2 orbit determination and prediction using onboard dual-frequency GNSS data[J]. GPS Solutions, 2020, 24: 11.
JU B, GU D, HERRING T A, et al. Precise orbit and baseline determination for maneuvering low earth orbiters [J]. GPS Solutions, 2017, 21(1):53-64.
GU D, JU B, LIU J, et al. Enhanced GPS-based GRACE baseline determination by using a new strategy for ambiguity resolution and relative phase center variation corrections[J]. Acta Astronautica, 2017, 138(9):176-184.
李语强,伏红林,李荣旺,等. 云南天文台月球激光测距研究与实验[J]. 中国激光,2019,46(1):0104004.
LI Y Q, FU H L, LI R W, et al. Research and experiment of lunar laser rangingin Yunnan observatories[J]. Chinese Journal of Lasers, 2019, 46(1): 0104004.
HE Y, LIU Q, DUAN H Z, et al. Manufacture of a hollow corner cube retroreflector for next generation of lunar laser ranging[J]. Research in Astronomy and Astrophysics, 2018, 18(11):136.
HE Y, LIU Q, HE J J, et al. Development of a 170-mm hollow corner cube retroreflector for the future lunar laser ranging[J]. Chinese Physics B, 2018, 27(10):100701.
LUO J, et al. In preparation.
LUO J, BAI Y Z, CAI L, et al. The first round result from the TianQin-1 satellite[J]. Classical and Quantum Gravity, 2020, 37(18): 185013.
0
浏览量
19
下载量
17
CSCD
关联资源
相关文章
相关作者
相关机构