1.哈尔滨工业大学能源科学与工程学院,黑龙江 哈尔滨150001
2.天琴计划”教育部重点实验室,中山大学天琴中心 & 物理与天文学院,天琴前沿科学中心, 国家航天局引力波研究中心,广东 珠海 519082
3.中山大学航空航天学院,广东 深圳 518107
4.华中科技大学物理学院引力中心,湖北 武汉430074
5.北京控制工程研究所,北京100081
6.西北工业大学航天学院,陕西 西安710072
7.上海交通大学机械与动力工程学院,上海200240
8.贵州大学电气工程学院,贵州 贵阳550025
于达仁(1966年生),男;研究方向:空间电推进技术;E-mail:yudaren@hit.edu.cn
刘辉(1981年生),男;研究方向:微推力器;E-mail:huiliu@hit.edu.cn
纸质出版日期:2021-01-25,
网络出版日期:2021-01-15,
收稿日期:2020-11-09,
录用日期:2020-11-19
扫 描 看 全 文
于达仁,牛翔,王泰卜等.面向空间引力波探测任务的微推进技术研究进展[J].中山大学学报(自然科学版),2021,60(01):194-212.
YU Daren,NIU Xiang,WANG Taibu,et al.The developments of micro propulsion technology based on space gravitational wave detection task[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):194-212.
于达仁,牛翔,王泰卜等.面向空间引力波探测任务的微推进技术研究进展[J].中山大学学报(自然科学版),2021,60(01):194-212. DOI: 10.13471/j.cnki.acta.snus.2020.11.09.2020B121.
YU Daren,NIU Xiang,WANG Taibu,et al.The developments of micro propulsion technology based on space gravitational wave detection task[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):194-212. DOI: 10.13471/j.cnki.acta.snus.2020.11.09.2020B121.
微推力器是实现空间引力波探测中无拖曳控制任务的关键。本文在分析空间引力波探测无拖曳控制系统对微推力器要求基础上,通过微推进技术原理开展分析,梳理出了满足要求的微推力器,包括冷气推力器、波电离离子推力器、会切磁场型霍尔推力器和场致发射推力器4种备选方案,并介绍了4种推力器以及基于推力器的无拖曳控制国内外相关研究现状。在此基础上,本文介绍了天琴计划开展以来针对这几种微推力器的研制进展,并对后续应用于引力波探测的微推进技术研究方向进行展望。
Micro thruster is key to drag free control of space gravitational wave detection task. Based on the micro thruster demand from drag free control system of space gravitational wave detection, the principles of micro thrust technology are analyzed, which lead to the micro thruster satisfying demands including cold gas thruster, wave ionization ion thruster, Cusped field thruster and field emission thruster as alternatives. Their research status and drag free control based on them is also introduced in this paper. Based on this, the developments of Tianqin Plan on these alternatives are introduced thrusters and the future research directions of micro propulsion technologies applied in space gravitational wave detection are prospected.
空间引力波探测无拖曳控制微推进会切磁场型霍尔推力器波电离离子推力器冷气推力器场致发射推力器
space gravitational wave detectiondrag free controlmicro propulsioncusped field thrusterwave ionization ion thrustercold gas thrusterfield emission thruster
邓剑峰,蔡志鸣,陈琨,等. 无拖曳控制技术研究及在我国空间引力波探测中的应用[J].中国光学, 2019, 12(3): 503-514.
DENG J F, CAI Z M, CHEN K, et al. Drag-free control and its application in China's space gravitational wave detection[J]. Chinese Optics, 2019, 12(3): 503-514.
WU S F, GIULICCHI L, FENAL T, et al. Attitude stabilization of LISA pathfinder spacecraft using colloidal micro-newton thrusters[C]//AIAA Guidance, Navigation, and Control Conference,2010: 8198.
于达仁,崔凯,刘辉,等. 用于引力波探测的微牛级霍尔电推进技术[J].哈尔滨工业大学学报,2020,52(6):171-181.
YU D R, CUI K, LIU H, et al. Micro-newton hall electric propulsion technology for gravitational wave detection[J]. Journal of Harbin Institute of Technology, 2020,52(6):171-181.
罗子人,白姗,边星,等. 空间激光干涉引力波探测[J].力学进展,2013,43(04):415-447.
LUO Z R, BAI S, BIAN X, et al. Space laser interference gravitational wave detection[J]. Advances in aesthetics, 2013,43(04):415-447.
ZIEMER J K, MARRESE-READING C M, ARESTIE S M, et al. LISA colloid micro thruster technology development plan and progress[C]//The 36th IEPC,2019:895.
CHOUBEY S, PRAMANIK D. Constraints on sterile neutrino oscillations using DUNE near detector[J]. Physics Letters B, 2017, 764: 135-141.
于达仁,乔磊,蒋文嘉,等. 中国电推进技术发展及展望[J].推进技术,2020,41(1):1-12.
YU D R, QIAO L, JIANG W J, et al. Development and Prospect of Electric Propulsion Technology in China[J]. Journal of Propulsion Technology, 2020,41(1):1-12.
LUO J, BAI Y Z, CAI L, et al. The first round result from the TianQin-1 satellite[J]. Classical and Quantum Gravity, 2020, 37(18): 185013.
任海. 微小冷气推进技术的应用现状和发展[J].控制工程,2003(5):10-19.
REN H. The application status and development of micro cold gas propulsion technology[J]. Control Engineering, 2003(5):10-19.
曾庆德. 冷气微推力器测试系统设计及实验研究[D].南京:南京理工大学,2018.
ZENG Q D. Micro cold gas thruster test system design and experimental research[D]. Nanjing University of Science and Technology,2018.
SCHLEICHER A, ZIEGLER T, SCHUBERT R, et al. In-orbit performance of the LISA Pathfinder drag-free and attitude control system[J]. CEAS Space Journal, 2018, 10(4): 471-485.
RICCI F. Gravitational waves detectors[J]. Journal of Physics: Conference Series,2020, 1468:012224.
ARMANO M, AUDLEY H, BAIRD J, et al. Beyond the required LISA free-fall performance: new LISA Pathfinder results down to 20 μHz[J]. Physical Review Letters, 2018, 120(6): 061101.
ROSS M P, HAGEDORN C A, SHAW E A, et al. Limits on the stochastic gravitational wave background and prospects for single-source detection with GRACE Follow-On[J]. Physical Review D, 2020, 101(10): 102004.
李永,刘旭辉,汪旭东,等. 空间极小推力宽范围可调推进技术研究进展[J].空间控制技术与应用,2019,45(6):1-12+19.
LI Y, LIU X H, WANG D Y, et al. Review and Prospect on the large-range thrust throttling technology with extremely small thrust[J]. Aerospace Control and Application, 2019,45(6):1-12+19.
汪旭东,李国岫,陈君,等. 压电比例阀调节的氙气微推进系统流量特性仿真研究[J].推进技术,2019,40(12):2867-2873.
WANG X D, LI G X, CHEN J, et al. Simulation study on flow characteristics of a xeon micro propulsion system under regulation of piezoelectric proportional valve[J]. Journal of Propulsion Technology, 2019,40(12):2867-2873.
金逸舟.不同磁路结构ECRIT离子源特性研究[D].西安:西北工业大学,2018.
JIN Y Z. Investigation on the electron cyclotron ion source of the electron cyclotron ion source thrusters with different magnetic circuit[D]. Northwestern Polytechnical University,2018.
BASSNER H, BERG H P, BARTOLI C, et al. IEPC-Paper 88-029[D]. Garmisch-Partenkirchen, Federal Republic of Germany, 1988.
马隆飞,贺建武,杨超,等. 微牛级射频离子推力器结构优化研究[J/OL].推进技术,2020-03-16. DOI:10.13675/j.cnki.tjjs.190828http://dx.doi.org/10.13675/j.cnki.tjjs.190828.
MA L F, HE J W, YANG C, et al. Structure optimization of micro-newton class radio-frequency ion thruster[J/OL]. Journal of Propulsion Technology, 2020-03-16. DOI:10.13675/j.cnki.tjjs.190828http://dx.doi.org/10.13675/j.cnki.tjjs.190828.
FEILI D, LOEB H W, SCHARTNER K H, et al. Performance mapping of new ÁN-RITs at Giessen[C]//IPEC, 2005:252.
KRUELLE G, ZEYFANG E, BIRNER W, et al. AIAA-Paper 81-694[R]. Las Vegas, 1981.
GROH K H, LOEB H W. State of the art of radio ‐ frequency ion sources for space propulsiona[J]. Review of Scientific Instruments, 1994, 65(5): 1741-1744.
LOEB H W. Development of RIT-Microthrusters[C]//55th IAC,2004. IAC-04-S. 4.04.
LEITER H, KUKIES R, KILLINGER R, et al. RIT-22 ion engine development-endurance test and life prediction[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,2006: 4667.
TSAY M, FRONGILLO J, ZWAHLEN J. Qualification model development of cubesat RF ion propulsion system BIT-3[C]//Proc 31st Int Symp Space Technol Sci, 2017.
TSAY M. Micro radio-frequency ion propulsion system[C]// AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,2012.
DOBKEVICIUS M. Modelling and design of inductively coupled radio frequency gridded ion thrusters with an application to Ion Beam Shepherd type space missions[D]. UK:University of Southampton, 2017.
FEILI D, LOEB H, SCHARTNER K, et al. Testing of New N-RITs at Giessen[C]// AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,2005.
贺建武,马隆飞,薛森文,等. 射频离子微推力器的研究进展[C]//第12届中国电推进学术研讨会. 哈尔滨, 2016.
HE J W, MA L F, XUE S W, et al. Review and prospect on the RITs[C]//12th Chinese Electric Propulsion Academic Seminars, Harin,2016.
IZUMI T , KOIZUMI H , YAMAGIWA Y , et al. Performance of miniature microwave discharge ion thruster for drag-free control[C]// AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,2012.
FUNASE R, KOIZUMI H, NAKASUKA S, et al. 50kg-class deep space exploration technology demonstration micro-spacecraft PROCYON[C]//28th Annual AIAA/USU Conference on Small Satellites, 2014.
KOIZUMI H, KAWAHARA H, YAGINUMA K, et al. In-flight operation of the miniature propulsion system installed on small space probe: PROCYON[C]//Joint Conference of 30th ISTS, 34th IEPC, and 6th NSAT,2015.
TAKAO Y, ERIGUCHI K, ONO K, et al. A validation study of a 3D PIC model for a miniature microwave discharge ion thruster[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference,2014: 3829.
TAKAO Y, KOIZUMI H, KASAGI Y, et al. Investigation of electron extraction from a microwave discharge neutralizer for a miniature ion propulsion system[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2016,14(30):41-46.
EZAKI T, YAMAMOTO N, TSURU T, et al. Plasma properties in a miniature microwave discharge ion thruster[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2010, 8(27): 55-59.
SUGITA Y, KOIZUMI H, TSUKIZAKI R, et al. Plasma diagnostics in a miniature microwave discharge ion thruster[C]//Proc 33rd Int Electric Propulsion Conf,2013.
KORNFELD G, KOCH N, COUSTOU G. First test results of the HEMP thruster concept[C]//Proceedings of the 28th International Electric Propulsion Conference,2003.
HARMANN H P, KORNFELD G, KOCH N. Physics and evolution of HEMP-thrusters[R]. IEPC-2007-108, 2007.
KORNFELD G, HARMANN H P, KOCH N. Status and limited life test results of the cylindrical HEMP 3050 thruster[C]//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,2005: 4223.
HARMANN H P, KOCH N, KORNFELD G. Low complexity and low cost electric propulsion system for telecom satellites based on HEMP thruster assembly[C]//Proceedings of the 30th International Electric Propulsion Conference.Florence,2007.
ZENG M, LIU H, QIAO L, et al. Experimental investigation of dielectric wall material effects on low-power HEMP thruster[J]. AIP Advances, 2020, 10(8):085317.
KOCH N, HARMANN H P, KORNFELD G. Status of the THALES high efficiency multi stage plasma thruster development for HEMP-T 3050 and HEMP-T 30250[C]//Proceedings of the 30th International Electric Propulsion Conference,2007: 17-20.
COURTNEY D G, LOZANO P, MARTINEZ-SANCHEZ M. Continued investigation of diverging cusped field thruster[C]// Proceedings of the 44th AIAA. ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Hartford, CT, 2008.
MacDONALD N A, YOUNG C V, CAPPELLI M A, et al. Ion velocity and plasma potential measurements of a cylindrical cusped field thruster[J]. Journal of Applied Physics, 2012, 111(9): 093303.
HEY F G. Micro Newton thruster development[M]. Wiesbaden: Springer, 2018.
LIU H, CHEN P B, SUN Q Q, et al. Design of a cusped field thruster for drag-free flight[J]. Acta Astronautica, 2016, 126: 35-39.
CUI K, LIU H, JIANG W, et al. Effects of thrust noise and measurement noise on drag-free and attitude control system[J]. Microgravity Science and Technology, 2019, 32(2): 189-202.
AMARO-SEOANE P, AUDLEY H, BABAK S, et al. Laser interferometer space antenna[J]. arXiv preprint arXiv:1702.00786, 2017.
GAMERO-CASTANO M, HRUBY V, SPENCE D, et al. Micro Newton colloid thruster system development for ST7-DRS mission[C]//39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,2018: 4543.
陈凯,李得天,谷增杰,等. 胶体推力器的研究进展及关键技术[J].真空科学与技术学报,2019,39(10):918-926.
CHEN K, LI D T, GU Z J, et al. Latest Progress of Colloid Electric Propulsion Thruster Technology[J]. Chinese Journal of Vacuum Science and Technology, 2019,39(10):918-926.
ANDERSON G, ANDERSON J, ANDERSON M, et al. Experimental results from the ST7 mission on LISA pathfinder[J]. Physical Review D, 2018, 98(10): 102005.
SPENCE D, ZWAHLEN J, HRUBY V, et al. Colloid thruster propellant conditioning and storage for the NASA ST7 mission[C]//44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,2008: 4931.
MARRESE-READING C, ZIEMER J, GAMERO-CASTANO M, et al. Plasma potential measurements in the plume of a colloid micro-Newton thruster[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,2006: 4642.
GAMERO-CASTANO M. Characterization of a six-emitter colloid thruster using a torsional balance[J]. Journal of Propulsion and Power, 2004, 20(4): 736-741.
DEMMONS N, HRUBY V, SPENCE D, et al. ST7-DRS mission colloid thruster development[C]//44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,2008: 4823.
XIONG J, ZHOU Z, SUN D, et al. Development of a MEMS based colloid thruster with sandwich structure[J]. Sensors and Actuators A: Physical, 2005, 117(1): 168-172.
FEHRINGER M, RUEDENAUER F, STEIGER W. Indium liquid-metal ion sources as micronewton thrusters[C]//International Lisa Symposium on Laser Interferometer Space Antenna. American Institute of Physics, 1998.
ZIEMER J K. Sub-micronewton thrust measurements of indium field emission thrusters[C]//28th International Electric Propulsion Conference Toulouse, 2003.
TAJMAR M, GENOVESE A, STEIGER W. Indium field emission electric propulsion micro thruster experimental characterization[J]. Journal of Propulsion & Power, 2004, 20(2):211-218.
SCHARLEMANN C, GENOVESE A, BULDRINI N, et al. In-FEEP qualification test program for LISA pathfinder[C]//44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Hartford, 2008.
SCHARLEMANN C, GENOVESE A, SCHNITZER R, et al. In-FEEP endurance test for LISA PF[C]//45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Colorado, Denver, 2009.
NICOLINI D, CHESTA E, AMO J G D, et al. FEEP-5 thrust validation in the 10–100 µN range with a simple nulled-pendulum thrust stand: integration procedures[C]//27th International Electric Propulsion Conference. Pasadena, USA, 2001.
BIAGIONI L, CECCANTI F, SAVERDI M, et al. Qualification status of the FEEP-150 electric micro propulsion subsystem[C]// 41th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference. Tucson, USA, 2005.
CECCANTI F, PAITAL L, CESARI U, et al. 3200 hours endurance testing of the lisa pathfinder FT-150 thruster[C]//31st International Electric Propulsion Conference. USA, Michigan, 2009.
PAITAL L, CESARI U, NANIA F, et al. FT-Alta150: The thruster for LISA pathfinder and LISA NGO missions[C]//9th LISA Symposium. Paris, 2012.
MAGHAMI P, MARKLEY F L, DENNEHY C J, et al. Controller design for the ST7 disturbance reduction system[J]. ESASP, 2003, 516: 527.
MAGHAMI P G, HSU O C, MARKLEY F L, et al. Disturbance reduction control design for the ST7 flight validation experiment[C]//Flight Dynamics Symposium, Greenbelt,2003.
FICHTER W, GATH P, VITALE S, et al. LISA pathfinder drag-free control and system implications[J]. Classical and Quantum Gravity, 2005, 22(10): S139.
GATH P, SCHULTE H R, WEISE D, et al. Drag free and attitude control system design for the LISA science mode[C]//AIAA Guidance, Navigation and Control Conference and Exhibit,2007: 6731.
SAAGE R, ROSS R, SCHLEICHER A, et al. Controller design method for drag-free systems with micro-propulsion constraints[C]//AIAA Guidance, Navigation, and Control Conference,2010: 8200.
汤明杰,杨涓,冯冰冰,等. 微推力ECR离子推力器等离子体源电子获能计算分析[J]. 推进技术, 2015, 36(11):1741-1747.
TANG M J, YANG J, FENG B B, et al. Calculation analysis on electron heating within plasma source used by micro ECR ion thruster[J]. Journal of Propulsion Technology, 2015, 36(11):1741-1747.
汤明杰,杨涓,金逸舟,等. 微型电子回旋共振离子推力器离子源结构优化实验研究[J]. 物理学报, 2015, 64(21): 319-325.
TANG M J, YANG J, JIN Y Z, et al. Experimental study on the optimization of ion source structure of ECRIT[J]. Acta Physica Sinica, 2015, 64(21): 319-325.
孟海波,杨涓,朱康武,等. 微推力ECR离子推力器中和器实验研究[J]. 西北工业大学学报, 2018, 36(1):42-48.
MENG H B, YANG J, ZHU K W, et al. Experimental research on neutralizer of ECRIT[J]. Journal of Northwestern Polytechnical University, 2018, 36(1):42-48.
夏旭,杨涓,金逸舟,等. 磁路和天线位置对2 厘米电子回旋共振离子推力器性能影响的实验研究[J]. 物理学报, 2019, 68(23):230-240.
XIA X, YANG J, JIN Y Z, et al. Experimental study on the effect of magnetic circuit and antenna position on the performance of 2 cm ECRIT[J]. Acta Physica Sinica, 2019, 68(23):230-240.
XIA X, YANG J, JIN Y, et al. The influence of magnetic circuit and operating parameters on the plasma property of 2 cm ECRIT ion source[J]. Vacuum, 2020,179:109517.
LIU H, ZENG M, CHEN Z, et al. Electron cyclotron resonance discharge enhancement in a cusped field thruster[J]. Plasma Sources Science and Technology, 2020,DOI:10.1088/1361-6595/abaffchttp://dx.doi.org/10.1088/1361-6595/abaffc.
TAYLOR G I, McEWAN A D. The stability of a horizontal fluid interface in a vertical electric field[J]. Journal of Fluid Mechanics, 1965, 22(1): 1-15.
WRIGHT P, THUPPUL A, WIRZ R E. Life-limiting emission modes for electrospray thrusters[C]//2018 Joint Propulsion Conference,2018: 4726.
0
浏览量
3
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构