天琴计划”教育部重点实验室,中山大学天琴中心 & 物理与天文学院,天琴前沿科学中心, 国家航天局引力波研究中心,广东 珠海 519082
范纹彤(1994年生),女;研究方向:引力波探测望远镜的光学系统设计;E-mail:fanwt5@mail2.sysu.edu.cn
闫勇(1981年生),男;研究方向:空间科学仪器/载荷总体设计;E-mail:yanyong5@mail.sysu.edu.cn
纸质出版日期:2021-01-25,
网络出版日期:2021-01-13,
收稿日期:2020-11-02,
录用日期:2020-12-09
扫 描 看 全 文
范纹彤,赵宏超,范磊等.空间引力波探测望远镜系统技术初步分析[J].中山大学学报(自然科学版),2021,60(01):178-185.
FAN Wengtong,ZHAO Hongchao,FAN Lei,et al.Preliminary analysis of space gravitational wave detection telescope system technology[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):178-185.
范纹彤,赵宏超,范磊等.空间引力波探测望远镜系统技术初步分析[J].中山大学学报(自然科学版),2021,60(01):178-185. DOI: 10.13471/j.cnki.acta.snus.2020.11.02.2020B111.
FAN Wengtong,ZHAO Hongchao,FAN Lei,et al.Preliminary analysis of space gravitational wave detection telescope system technology[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):178-185. DOI: 10.13471/j.cnki.acta.snus.2020.11.02.2020B111.
为探测到0.1 mHz~1 Hz频段的引力波,天琴、LISA、太极等空间引力波探测器编队(或星座)需在几十万到几百万公里量级的臂长上,实现pm级精度的测量。因此直接作为星间干涉测量光路一部分的望远镜面临巨大的技术挑战。空间引力波探测望远镜有超高精度和超高稳定性的特点。本文以LISA引力波探测器望远镜为研究对象,根据星间激光干涉测量核心指标10 pm/ Hz
1/2
@0.1 mHz~1 Hz的要求和引力波探测的实际需求,分析了望远镜的光学设计方案。在设计基础上,就材料选择、光学加工、装调及杂散光抑制等方面进行了分析和探讨,为后续望远镜的研制提供了参考依据。
In order to realize the detection of gravitational waves in the frequency range of 0.1 mHz~1 Hz, the formations(or constellations) of space gravitational wave detectors such as Tianqin, LISA, and Taiji needs to achieve picometer-level measurement accuracy on the order of hundreds of thousands or even millions of kilometers. Therefore, telescopes directly used as part of the inter-satellite interferometry optical path are facing huge technical challenges. Space gravitational wave detection telescope has the characteristics of ultra-high precision and ultra-high stability. This article takes the LISA gravitational wave detector telescope as the research object, and analyzes the optical design scheme of the telescope according to the requirements of 10 pm/Hz
1/2
core index of inter-satellite laser interferometry and the actual demand of gravitational wave detection. And based on the design, analysis and discussion on material selection, optical processing, adjustment and stray light suppression are carried out, which provides a reference for the subsequent development of the telescope.
望远镜引力波LISA杂散光
telescopegravitational waveLISAstray light
ISOYAMA S, NAKANO H, NAKAMURA T. Multiband gravitational-wave astronomy: Observing binary inspirals with a decihertz detector, B-DECIGO[J]. Progress of Theoretical and Experimental Physical, 2018: 073E01.
ABBOTT B P, ABBOTT R, ABBOTT T D, et al. Observation of gravitational waves from a binary black hole Merger[J]. Physical Review Letters, 2016,116: 061102.
CAPRINI C, HINDMARSH M, HUBER S, et al. Science with the space-based interferometer eLISA.Ⅱ: Gravitational waves from cosmological phase transitions[J]. Journal of Cosmology and Astroparticle Physics, 2016 (4): 1.
TAMANINI N, CAPRINI C, BARAUSSE E, et al. Science with the space-based interferometer eLISA. Ⅲ: Probing the expansion of the universe using gravitational wave standard sirens[J]. Journal of Cosmology and Astroparticle Physics, 2016 (4): 2.
BARTOLO N, CAPRINI C, DOMCKE V, et al. Science with the space-based interferometer LISA. Ⅸ: Probing inflation with gravitational waves[J]. Journal of Cosmology and Astroparticle Physics, 2016 (12): 26.
BABAK S, GAIR J, SESANA A, et al. Science with the space-based interferometer LISA. V. Extreme mass-ratio inspirals[J]. Physical Review , 2017, D95: 103012.
程景全, 杨德华. 引力波和引力波望远镜的发展[J]. 天文学进展, 2005(3): 195-204.
CHENG J Q, YANG D H. The development of gravitational waves and gravitational wave telescopes[J]. Progress in Astronomy, 2005 (3):195-204.
KARSTEN D. LISA unveiling a hidden universe assessment study report [R].ESA/SRE, 2011.
DANZMANN K. Laser interferometer space antenna: A cornerstone mission for the observation of gravitational waves. ESA system and technology study report [R]. 2000.
MARCELLO S. Payload preliminary design description [R]. LISA-MSE-DD-0001, 2009.
SHIRI R, STEIN R, MURPHY K, et al. Fabrication of petal-shaped masks for suppression of the on-axis poisson spot in telescope systems[J]. Review of Scientific Instruments, 2016, 87( 4) : 043112.
LIVAS J , SANKAR S. Optical telescope design study results [J]. Journal of Physics: Conference Series, 2015,610 : 012029 .
王小勇. 空间光学技术发展与展望[J]. 航天返回与遥感, 2018, 39(4): 79-86.
WANG X Y. Development and prospect of space optics technology[J]. Aerospace Return and Remote Sensing, 2018, 39(4): 79-86.
CHEN S N, JIANG H L, WANG C Y, et al. Optical system design of inter-spacecraft laser interferometry telescope[J]. Optics and Photonics Journal, 2019, 9: 26-37.
DANZMANN K ,PRINCE T A , BENDER P, et al. LISA unveiling a hidden Universe[R]. ESA/SRE, 2011.
LIVAS J C, ARSENOVIC P, CROW J A, et al. Telescopes for space-based gravitational wave missions[J]. Optical Engineering, 2013, 52(9):091811 .
LIVAS J C, SANKAR S R. Optical telescope system-level design considerations for a space-based gravitational wave mission[C]//Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave.2016:99041K.
罗子人, 白姗, 边星, 等. 空间激光干涉引力波探测[J]. 力学进展, 2013, 43( 4): 415-447.
LUO Z R, BAI S, BIAN X, et al. Space laser interference gravitational wave detection[J]. Advances in Mechanics, 2013, 43(4): 415-447.
王智, 沙巍, 陈哲, 等. 空间引力波探测望远镜初步设计与分析[J]. 中国光学, 2018, 11(1): 131-151.
WANG Z, SHA W, CHEN Z, et al. Preliminary design and analysis of space gravitational wave detection telescope[J]. Chinese Optics, 2018, 11(1): 131-151.
陈胜楠, 姜会林, 王春艳, 等. 大倍率离轴无焦四反光学系统设计[J]. 中国光学,2020,13(1):179-188.
CHEN S N, JIANG H L, WANG C Y, et al. Design of a large-magnification off-axis afocal four-reflection optical system[J]. Chinese Optics, 2020, 13(1): 179-188.
SCHUSTER S. Tilt-to-length coupling and diffraction aspects in satellite interferometry[D]. Hannover: Gottfried Wil-helm Leibniz Universität Hannover, 2017.
文东辉, 周海锋, 徐钉, 等. 超光滑表面加工技术研究进展[J]. 机电工程, 2015, 32(5): 579-584.
WEN D H, ZHOU H F, XU D, et al. Research progress in ultra-smooth surface processing technology[J]. Mechatronic Engineering, 2015, 32(5): 579-584.
张云, 冯之敬, 赵广木. 磁流变抛光工具及其去除函数[J]. 清华大学学报(自然科学版) ,2004, 44 (2): 190-193.
ZHANG Y, FENG Z J, ZHAO G M. Magnetorheological polishing tool and its removal function[J]. Journal of Tsinghua University (Natural Science Edition), 2004, 44( 2): 190-193.
ABBOTT B P, ABBOTT R, ABBOTT T D, et al. GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coales cence[J]. Physical Review Letters, 2016,116: 241103.
ABBOTT B P, ABBOTT R, ABBOTT T D, et al. GW170104: Observation of a 50-solar-mass binary black hole coalescence at redshift[J] . Physical Review Letters, 2017, 118: 221101.
ABBOTT B P, ABBOTT R, ABBOTT T D, et al. GW170608: Observation of a 19 solar-mass binary black hole coalescence[J]. Astrophysical Journal, 2017, 851: L35.
0
浏览量
1
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构