东南大学交通学院,江苏 南京 211102
刘亚其(2000年生),男;研究方向:组合导航,交通空间信息感知; E-mail:liuyaqi@seu.edu.cn
于先文(1974年生),男;研究方向:组合导航,交通空间信息感知; E-mail:yuxianwen@seu.edu.cn
网络出版日期:2024-10-15,
收稿日期:2024-09-13,
录用日期:2024-10-07
移动端阅览
刘亚其, 于先文. 一种虚拟弧段式的停车场路网拓扑模型[J/OL]. 中山大学学报(自然科学版)(中英文), 2024,1-8.
LIU Yaqi, YU Xianwen. Road network topology model of parking lot in the form of virtual arc[J/OL]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2024,1-8.
刘亚其, 于先文. 一种虚拟弧段式的停车场路网拓扑模型[J/OL]. 中山大学学报(自然科学版)(中英文), 2024,1-8. DOI: 10.13471/j.cnki.acta.snus.ZR20240282.
LIU Yaqi, YU Xianwen. Road network topology model of parking lot in the form of virtual arc[J/OL]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2024,1-8. DOI: 10.13471/j.cnki.acta.snus.ZR20240282.
本文提出了一种虚拟弧段式的停车场路网拓扑模型。首先,确定车位所在路段以及车位中心在该路段的投影点。然后,以投影点两侧子路段的长度与该路段总长度的比值确认分割位置。对于每个车位,使用分割位置截取路段的一部分作为虚拟弧段,表达车位与路网之间的拓扑关系。最后,在寻路时将路径规划任务分解为起点到车位所在路段两端点以及两端点到车位两个阶段,选择综合代价更低的一条作为最终路径。实验表明:相比于打断道路式模型,本文模型在用于寻路计算时节省了70%以上的计算时间和20%的存储空间,减少了90%以上的拓扑节点和边。因此,该模型能有效减少寻路时间、降低拓扑路网维护工作量和数据存储传输压力。
This paper proposes a road network topology model of parking lot in the form of virtual arc. First, determine the road where the parking space is located and the projection point of the parking center on the road. Then, the segmentation position is confirmed by the ratio of the length of the sub-road on both sides of the projection point to the total length of the road. For each parking space, a part of the road is intercepted by the segmentation position as a virtual arc to express the topological relationship between the parking space and the road network. Finally, the path planning is divided into two stages: from the starting point to the endpoints of the road where the parking space is located, and from the endpoints to the parking space. The one with the lower comprehensive cost will be chosen as the final path. The experimental results show that the computational time is saved by more than 70%, the number of topological nodes and edges is reduced by more than 90%, the storage space is saved by 20%. It is proved that the model is of great significance to reduce the time of route finding, the workload of maintaining topological network and the pressure of data storage and transmission.
拓扑路网虚拟弧段停车场停车诱导
topology networkvirtual arcparking lotparking guidance
陈维旺, 朱正亮,陈钦佩, 等, 2023. 用于室内消防救援的融合路网构建方法研究[J]. 消防科学与技术, 42(5): 689-694.
胡炎,王萍, 2017. 优化的离散λ-中轴骨架提取算法[J]. 计算机辅助设计与图形学学报, 29(8): 1505-1514.
李灿, 2017. 面向停车诱导的室内地图模型构建与应用[D].武汉:武汉大学.
李思宇, 向隆刚,张彩丽, 等, 2019. 基于低频出租车轨迹的城市路网交叉口提取研究[J]. 地球信息科学学报, 21(12): 1845-1854.
王世广, 于德新,王树兴, 等, 2018. 基于改进度的城市路网元素连接特性[J]. 交通运输工程学报, 18(2): 101-110.
王行风,刘俊生, 2021. 面向室内导航的分层认知路网优化方法[J]. 地球信息科学学报, 23(9): 1586-1597.
王致远, 2022. 大型停车场内寻泊车辆的优化管控方法研究[D].南京:东南大学.
武恩超, 张恒才,吴升, 2018. 基于中轴变换算法的室内外一体化导航路网自动生成方法[J]. 地球信息科学学报, 20(6): 730-737.
尹言军, 黄中和,肖琨, 等, 2024. 智慧城市道路内停车位现状与布设潜力分析——以武汉市江汉区为例[J]. 测绘通报, (S1): 201-203.
张彩丽, 向隆刚,李雅丽, 等, 2021. 基于出租车轨迹的可导航路网构建[J]. 测绘学报, 50(12): 1650-1662.
赵江洪, 董岩,危双丰, 等, 2020. 室内导航路网提取研究进展[J]. 测绘科学, 45(12): 45-54+76.
中国统计, 2024. 中华人民共和国2023年国民经济和社会发展统计公报[J]. 中国统计, (3): 4-21.
周熙阳, 杨兆升,张伟, 等, 2016. 考虑信号交叉口转向类型的最优路径规划算法[J]. 华南理工大学学报(自然科学版), 44(4): 101-108.
DONG N, FANG X, WU A G, 2016. A novel chaotic particle swarm optimization algorithm for parking space guidance[J]. Math Probl Eng, 2016: 5126808.
FU M, LIU R, QI B, et al, 2020. Generating straight skeleton-based navigation networks with industry foundation classes for indoor way-finding[J]. Automat Constr, 112: 103057.
GAO H, YUN Q, RAN R, et al, 2021. Smartphone-based parking guidance algorithm and implementation[J]. J Intell Transp Syst, 25(4): 412-422.
LIN W Y, LIN P H, 2018. Intelligent generation of indoor topology (I-Git) for human indoor pathfinding based on IFC models and 3D GIS technology[J]. Automat Constr, 94: 340-359.
REMOLINA E, KUIPERS B, 2004. Towards a general theory of topological maps[J]. Artificial Intelligence, 152(1): 47-104.
TEO T, CHO K, 2016. BIM-oriented indoor network model for indoor and outdoor combined route planning[J]. Adv Eng Inform, 30(3): 268-282.
WANG X, SHI H, ZHANG C, 2020. Path planning for intelligent parking system based on improved ant colony optimization[J]. IEEE Access, 8: 65267-65273.
WERNER S, KRIEG-B C B, HERRMANN T, 2000. Modelling navigational knowledge by route graphs[J]. Spatial Cognition II, 1849: 295-316.
XU M, HIJAZI I, MEBARKI A, et al, 2016. Indoor guided evacuation: TIN for graph generation and crowd evacuation[J]. Geomat, Nat Haz Risk, 7(S1): 47-56.
YANG L, WORBOYS M, 2015. Generation of navigation graphs for indoor space[J]. Int J Geog Inform Sci, 29(10): 1737-1756.
ZHOU X, XIE Q, GUO M, et al, 2020. Accurate and efficient indoor pathfinding based on building information modeling data[J]. IEEE Trans Industr Inform, 16(12): 7459-7468.
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构