中国矿业大学化学与环境工程学院/矿山与城市固废资源化工程研究中心,北京 100083
网络出版日期:2024-10-11,
移动端阅览
赵环帅, 潘永泰, 乔鑫, 等. 加载速率对青砂岩抗拉特性及断裂能耗的影响[J/OL]. 中山大学学报(自然科学版)(中英文), 2024,1-9.
ZHAO Huanshuai, PAN Yongtai, QIAO Xin, et al. The influence of loading rate on the tensile properties and fracture energy consumption of Green sandstone[J/OL]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2024,1-9.
赵环帅, 潘永泰, 乔鑫, 等. 加载速率对青砂岩抗拉特性及断裂能耗的影响[J/OL]. 中山大学学报(自然科学版)(中英文), 2024,1-9. DOI: 10.13471/j.cnki.acta.snus.ZR20240276.
ZHAO Huanshuai, PAN Yongtai, QIAO Xin, et al. The influence of loading rate on the tensile properties and fracture energy consumption of Green sandstone[J/OL]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2024,1-9. DOI: 10.13471/j.cnki.acta.snus.ZR20240276.
结合室内试验与细观参数标定,建立了青砂岩宏-细观力学关系,分析了青砂岩在不同加载速率下的力学特性、裂纹演化规律与能量利用效率。结果表明:(1)加载速率小于0.1 m/s时,青砂岩应力-应变曲线形态基本一致,无明显的差异性;且加载速率越小,脆性破坏越显著。拉力链是导致裂纹扩展与延伸的主导原因,而最终断裂是压力和拉力链相互作用的结果。(2)青砂岩破裂形态可分主裂纹为主、次生裂纹出现、次生裂纹贯穿的破坏形式。随着加载速率的增加,青砂岩裂纹数量与破裂微元数量基本上呈现出相似趋势。(3)加载速率为0.000 5~0.1 m/s,输入能-断裂能曲线呈现上下波动现象,但波动范围较小;在加载速率为0.5~1 m/s时,输入能呈直线增加趋势,断裂能呈先快速增加后变缓的趋势,能量利用效率主要集中于10.262%~11.511%。
The macro-micro mechanical relationship of Green sandstone was established by indoor experiments and microscopic parameter calibration. The mechanical properties, crack evolution law, and energy utilization efficiency under different loading rates were analysed. The results showed that:(1)when the loading rate is less than 0.1 m/s, the stress-strain curve shape of the green sandstone is basically consistent,and the smaller the loading rate, the more significant the brittle failure. The tension chain is the main cause of crack propagation and extension,and the ultimate fracture is the result of the interaction between pressure and tension chains.(2)the fracture morphology of green sandstone can be divided into the failure way dominated by the main crack, the failure way where secondary cracks appear, and the failure way where secondary cracks penetrate. With the increase of loading rate, the number of cracks and the number of fracture elements in green sandstone show a similar trend.(3) The loading rate is 0.000 5~0.1 m/s, and the input energy fracture energy curve shows up and down fluctuations, but the fluctuation range is small; When the loading rate is 0.5~1 m/s, the input energy shows a nearly linear increase trend, the fracture energy shows a rapid increase, and then a slow trend. The energy utilization efficiency is mainly concentrated in 10.262%~11.511%.
青砂岩加载速率巴西劈裂抗拉特性断裂能
Green sandstoneloading ratebrazil splittingtensile propertiesfracture energy
程爱平,舒鹏飞,邓代强,等,2022.单轴压缩下尾砂胶结充填体细观能量耗散与损伤表征研究[J].采矿与安全工程学报,39(6):1227-1234.
戴罡,2015.加载速率影响下岩石试件破坏特性研究[D].阜新:辽宁工程技术大学.
邓华锋,王晨玺杰,李建林,等,2018.加载速率对砂岩抗拉强度的影响机制[J].岩土力学,39(S1):79-88.
丁桐桐,徐建华,李远安,等,2021.基于离散单元法的立轴冲击破碎机成砂率数值计算[J].应用力学学报,38(5):2018-2024.
胡涛涛,王栋,康志斌,等,2023.不同软弱夹层倾角炭质板岩的巴西劈裂试验及数值模拟研究[J/OL].应用力学学报:1-12.http://kns.cnki.net/kcms/detail/61.1112.O3.20231115.1350.011.htmlhttp://kns.cnki.net/kcms/detail/61.1112.O3.20231115.1350.011.html.
黄达,岑夺丰,2013.单轴静-动相继压缩下单裂隙岩样力学响应及能量耗散机制颗粒流模拟[J].岩石力学与工程学报,32(9):1926-1936.
姜耀东,李海涛,赵毅鑫,等,2014. 加载速率对能量积聚与耗散的影响[J]. 中国矿业大学学报,43(3):369-373.
金爱兵,朱东风,孙浩,等,2023.不同加载速率下的矿岩劈裂破坏特性试验研究[J].中南大学学报(自然科学版),54(1):269-279.
刘天为,2020.砂岩巴西劈裂试验离散元分析及破裂机理研究[J].水电能源科学,38(11):133-136.
石崇,张强,王盛年,2018. 颗粒流(PFC5.0)数值模拟技术及应用[M].北京:中国建筑工业出版社.
司凯,2017.岩石的巴西劈裂破坏及声发射特征试验研究[D].焦作:河南理工大学.
佟安,张军徽,武娜,2020.红砂岩单轴压缩宏细观参数映射关系研究[J].力学与实践,42(2):202-208.
王成,王春,苏承东,等,2021.不同加载速率对石灰岩巴西劈裂特性的影响[J].采矿与安全工程学报,38(5):1036-1044.
徐小敏,凌道盛,陈云敏,等,2010.基于线性接触模型的颗粒材料细-宏观弹性常数相关关系研究[J].岩土工程学报,32(7):991-998.
杨敬虎,于翔,2017.加载速率影响抗拉强度的机理及其数值验证[J].煤炭学报,42(S1): 51-59.
杨梦泽,2022.受压砂岩变形过程中能量演化及断裂机理研究[D].阜新:辽宁工程技术大学.
张磊,2021.超声振动激励下坚硬岩石高效破碎基础研究[D].徐州:中国矿业大学.
张学朋,蒋宇静,王刚,等,2016.基于颗粒离散元模型的不同加载速率下花岗岩数值试验研究[J].岩土力学,37(9):2679-2686.
赵环帅,潘永泰,余超,等,2024. 振动载荷对青砂岩冲击裂纹扩展及能量利用效率的影响[J/OL]. 清华大学学报(自然科学版):1-11. https://doi.org/10.16511/ j.cnki.qhdxxb.2024.22.029https://doi.org/10.16511/j.cnki.qhdxxb.2024.22.029.
GUO Q, PAN Y, ZHOU Q, et al,2021. Kinetic energy calculation in granite particles comminution considering movement characteristics and spatial distribution[J]. Minerals, 11(2):217.
POTYONDY D O, CUNDALL P A, 2004. A bonded-particle model for rock[J]. Pergamon,8:1329-1364.
YAHYAEI M, HILDEN M, SHI F, et al, 2016. Comminution[M]. Berlin: Springer.
ZHANG Z X, OUCHTERLONY F, 2022.Energy requirement for rock breakage in laboratory experiments and engineering operations: A review[J].Rock Mech Rock Eng,55:629-667.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构