1.中山大学电子与信息工程学院,广东 广州 510006
2.中山大学生物医学工程学院,广东 深圳 518107
3.中山大学附属第一医院,广东 广州 510080
4.天津大学医学院,天津 300072
阳瀚祺(2000年生),男;研究方向:生物医学电子学;E-mail:yanghq53@mail2.sysu.edu.cn;
黄爽(1995年生),女;研究方向:生物医学电子学;E-mail:huangsh239@mail.sysu.edu.cn;
刘静(1989年生),女;研究方向:生物医学电子学;E-mail:liuj753@mail.sysu.edu.cn;
谢曦(1986年生),男;研究方向:生物医学电子学; E-mail:xiexi27@mail.sysu.edu.cn
网络出版日期:2024,
收稿日期:2024-08-09,
录用日期:2024-09-03
移动端阅览
阳瀚祺, 黄爽, 刘静, 等. 纳米酶修饰植入式微电极对电化学传感性能的提升作用与应用研究[J/OL]. 中山大学学报(自然科学版)(中英文), 2024,1-9.
YANG Hangqi, HUANG Shuang, LIU Jing, et al. Nanoenzymes modified implantable microelectrodes for enhanced electrochemical sensing performance[J/OL]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2024,1-9.
阳瀚祺, 黄爽, 刘静, 等. 纳米酶修饰植入式微电极对电化学传感性能的提升作用与应用研究[J/OL]. 中山大学学报(自然科学版)(中英文), 2024,1-9. DOI: 10.13471/j.cnki.acta.snus.ZR20240251.
YANG Hangqi, HUANG Shuang, LIU Jing, et al. Nanoenzymes modified implantable microelectrodes for enhanced electrochemical sensing performance[J/OL]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2024,1-9. DOI: 10.13471/j.cnki.acta.snus.ZR20240251.
探究了三种纳米酶(Au
24
Cd
1
,Au
24
Er
1
,Au
25
)对银丝微电极(AgME)、金丝微电极(AuME)以及大脑皮层电图微电极(EcoGME)的修饰及检测方法。首先,本文成功将三种不同的纳米金属团簇材料修饰到三种电极的表面。电化学阻抗谱实验表明,纳米酶修饰后的电极在低频区域的交流阻抗显著降低。同时,研究了纳米酶修饰对不同电化学记录的影响。采用循环伏安法、差分脉冲伏安法、方波脉冲伏安法、常规脉冲伏安法和线性扫描伏安法对纳米酶修饰的电极进行测试,探讨不同纳米酶材料、电极基材以及检测方法在神经信号采集中的应用效果。研究成果能为神经科学研究等提供了更加精准、高效的传感选择方案。
We investigated the modification of three types of nanoenzymes(Au
24
Cd
1
,Au
24
Er
1
,and Au
25
) on Ag microelectrodes(AgME),Au microelectrodes(AuME),and electrocorticography microelectrode(EcoGME). In this study, three distinct nanoenzymes were successfully immobilized onto the surfaces of three different electrodes. The electrodes modified with nanoenzymes mitigated the inherently
high impedance characteristic of conventional neuroelectrodes. Meanwhile, we investigated the effect of nanoenzymatic modifications on different electrochemical recording methods, including electrochemical impedance spectroscopy, cyclic voltammetry, differential pulse voltammetry, square wave pulse voltammetry, normal pulse voltammetry and linear scanning voltammetry. By investigating the effects of various nanoenzyme materials,electrode substrates,and detection methods in neural signal acquisition applications,the findings provide more precise and efficient sensing options for neuroscience research and clinical practice.
纳米酶植入式微电极电化学检测
nanoenzymeimplantable microelectrodeselectrochemical detection
AI Y, HU Z N, LIANG X, et al, 2022.Recent advances in nanozymes: From matters to bioapplications[J]. Adv Funct Materials, 32 (14): 2110432.
ASHRAF G, CHEN W, ASIF M, et al, 2022. Topical advancements in electrochemical and optical signal amplification for biomolecules detection: A comparison[J]. Mater Today Chem, 26:101119.
CHUNG T, WANG J Q,WANG J, et al, 2015.Electrode modifications to lower electrode impedance and improve neural signal recording sensitivity[J]. J Neural Eng, 12 (5):056018.
COSTA K M, SCHOENBAUM G, 2022.Dopamine[J].Curr Biol, 32(15): R817-R824.
DIMOV I B, MOSER M,MALLIARAS G G,et al, 2022.Semiconducting polymers for neural applications[J]. Chem Rev, 122 (4): 4356-4396.
HONG G, LIEBER C M, 2019.Novel electrode technologies for neural recordings[J]. Nat Rev Neurosci, 20(6):330-345.
JO T, YOSHIMI K, TAKAHASHI T, et al, 2017. Dual use of rectangular and triangular waveforms in voltammetry using a carbon fiber microelectrode to differentiate norepinephrine from dopamine[J]. J Electroanal Chem, 802:1-7.
KHODAGHOLY D, GELINAS J N, THESEN T, et al, 2015. NeuroGrid: Recording action potentials from the surface of the brain[J]. Nat Neurosci, 18(2):310-315.
LIN Y, REN J, QU X, 2014. Nano-Gold as artificial enzymes: Hidden talents[J]. Adv Mater, 26(25):4200-4217.
LIU H, LI Y, SUN S, et al, 2021. Catalytically potent and selective clusterzymes for modulation of neuroinflammation through single-atom substitutions[J]. Nat Commun, 12(1):114.
LIU S, WANG Y, ZHAO Y, et al, 2024. A nanozyme-based electrode for high-performance neural recording[J]. Adv Mater, 36(6), e2304297.
LIU Y, WANG Z, JIAO Y, et al,2024. Flexible, high-density, laminated ECoG electrode array for high spatiotemporal resolution foci diagnostic localization of refractory epilepsy[J]. Bio Des Manuf,7(4):388-398.
MAHALAKSHMI S,SRIDEVI V,2021.In situ electrodeposited gold nanoparticles on polyaniline-modified electrode surface for the detection of dopamine in presence of ascorbic acid and uric acid[J]. Electrocatalysis, 12(4): 415-435.
MUSK E, 2019.An integrated brain-machine interface platform with thousands of channels[J]. J Med Internet Res, 21(10):e16194.
NJUS D, KELLEY P M, TU Y J, et al, 2020. Ascorbic acid: The chemistry underlying its antioxidant properties[J]. Free Radic Biol Med, 159:37-43.
RAJAMANI A R,PETER S C, 2018. Novel nanostructured Pt/CeO2@Cu2O carbon-based electrode to magnify the electrochemical detection of the neurotransmitter dopamine and analgesic paracetamol[J]. ACS Appl Nano Mater, 1(9):5148-5157.
SIMON D W, MCGEACHY M J, BAYIR H, et al,2017.The far-reaching scope of neuroinflammation after traumatic brain injury[J]. Nat Rev Neurol, 13(9):572.
TAO Y, JU E, REN J,et al, 2015. Bifunctionalized mesoporous silica-supported gold nanoparticles: intrinsic oxidase and peroxidase catalytic activities for antibacterial applications[J]. Adv Mater, 27(6):1097-1104.
VIVENTI J, KIM D H, VIGELAND L, et al, 2011.Flexible, foldable, multiplexedactively, high-density electrode array for mapping brain activity in vivo[J]. Nat Neurosci, 14(12): 1599-1605.
WANG H, WAN K, SHI X, 2019.Recent advances in nanozyme research[J]. Adv Mater, 31(45):e1805368.
XU Q, MAO C, LIU N N,et al, 2006. Direct electrochemistry of horseradish peroxidase based on biocompatible carboxymethyl chitosan-gold nanoparticle nanocomposite[J]. Biosens Bioelectron, 22(5):768-773.
ZHAO Z, ZHU H, LI X,et al,2023. Ultraflexible electrode arrays for months-long high-density electrophysiological mapping of thousands of neurons in rodents[J]. Nat Biomed Eng, 7(4):520-523.
ZHAO S,LI G,TONG C,et al, 2020.Full activation pattern mapping by simultaneous deep brain stimulation and fMRI with graphene fiber electrodes[J]. Nat Commun, 11(1):1788.
ZHANG A,MANDEVILLE E T, XU L, et al, 2023. Ultraflexible endovascular probes for brain recording through micrometer-scale vasculature[J]. Science, 381 (6655):306-312.
ZOU L,TIAN H,GUAN S, et al, 2021. Self-assembled multifunctional neural probes for precise integration of optogenetics and electrophysiology[J]. Nat Commun, 12 (1):5871.
0
浏览量
8
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构