1.暨南大学生态学系,广东 广州 510532
2.华南师范大学生态科学研究所,广东 广州 510532
韩博平(1965年生),男;研究方向:淡水生态学;E-mail:tbphan@jnu.edu.cn
纸质出版日期:2024-11-25,
网络出版日期:2024-07-23,
收稿日期:2024-05-24,
录用日期:2024-06-13
移动端阅览
韩博平,雷腊梅,赵亮等.拟柱孢藻(Cylindrospermopsis raciborskii)生态学研究现状与面临的挑战[J].中山大学学报(自然科学版)(中英文),2024,63(06):95-103.
HAN Boping,LEI Lamei,ZHAO Liang,et al.State of the art and challenges of Cylindrospermopsis raciborskii ecology[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(06):95-103.
韩博平,雷腊梅,赵亮等.拟柱孢藻(Cylindrospermopsis raciborskii)生态学研究现状与面临的挑战[J].中山大学学报(自然科学版)(中英文),2024,63(06):95-103. DOI: 10.13471/j.cnki.acta.snus.ZR20240174.
HAN Boping,LEI Lamei,ZHAO Liang,et al.State of the art and challenges of Cylindrospermopsis raciborskii ecology[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(06):95-103. DOI: 10.13471/j.cnki.acta.snus.ZR20240174.
拟柱孢藻(
Cylindrospermopsis raciborskii
)广泛分布于热带地区,被认为是热带或泛热带种类,能够产生多种毒素,其在水体中形成优势或发生水华将直接影响供水安全并导致生态系统的退化。近30年来,拟柱孢藻的分布在全球尺度上呈“蔓延”之势,在欧洲、北美洲和亚洲大陆的很多水体中广泛发生。我国近10年来拟柱孢藻分布的范围不断扩大,在珠江下游地区的供水水库中成为最主要的优势蓝藻种类。按目前的发展趋势,预计拟柱孢藻将很快成为我国淡水水体中继微囊藻(
Microsystis
)之后的第2个管控有害蓝藻种类。为避免发生类似于被动应对大范围微囊藻重度水华的困局,迫切需要前瞻性地开展基于现代生态学理念的拟柱孢藻种群生态学研究,理解其快速大范围发生并占据优势的生态学基础。本文从生物地理学与种群生态学的角度,对当前拟柱孢藻的扩张机制、种群竞争优势及其对生态系统的影响进行梳理,重点分析了拟柱孢藻对磷的高效吸收机制与对热带水环境的适应性,强调认为珠江流域及邻近地区是东亚和全球尺度上拟柱孢藻研究的关键区域。我们认为在气候变暖的背景下,珠江流域及邻近地区将成为该种北向扩散的种源区,以云贵高原为跳板,进入长江流域进一步向高纬度扩散。制定国家层面上的监测规范、防治方法和管理对策,迫切需要实施跨学科的整合研究,大力推进我国拟柱孢藻种群生态学的
研究和发展。
Cylindrospermopsis raciborskii
is widely distributed in the tropics and is considered to be a tropical or pantropical species capable of producing multiple toxins. In the last three decades, the distribution of the species has shown a strong trend of “spreading” on a global scale, and it has been widely occurring in many water bodies in Europe, North America and Asia. Nowadays, the species has been widely found in China, and is abundant in many lakes and reservoirs, especially in those for drinking water supply in southern China. It has been reducing water supply safety and largely impaired aquatic ecosystem health. In the lowland reservoirs of the Pearl River basin, the species has become the most dominant cyanobacterial species. It is predicted that
C. raciborskii
will become the second most harmful cyanobacteria species in China's fresh water after
Microcystis
spp. In order to avoid the dilemma similar to passive response to heavy
Microcystis
blooms in the country scale, it is required to carry out a prospective ecological study based on modern ecological concepts, and to understand the biological and ecological basis of its rapid and large-scale occurrence and dominance. In this review, the expansion mechanism, competitive advantage at population level and its impact on aquatic ecosystems were commented from the perspective of biogeography and population ecology. We summerised phosphorus uptake mechanisms by the species and its adaptability to tropical aquatic environment. Under global climate warming, the Pearl River Basin and its adjacent areas will function as the “seed” source area for the species to diffuse northward. The species will take advantage of the Yunnan-Guizhou Plateau as a stepping-stone to enter the Yangtze River basin and further spread to higher latitudes. So, we emphasize that the Pearl River Basin and its adjacent areas are the critical area
for the study of
C. raciborskii
in both East Asia and the global scale. We strongly suggest to carry out interdisciplinary approaches to the ecology of
C. raciborskii for
formulating national monitoring programs, controlling methods and management strategies.
蓝藻水华藻毒素扩张竞争入侵
cyanobacterial bloomingalgal toxinexpansioncompetitioninvasion
陈志江, 阮紫曦, 程楠, 等, 2022. 拟柱孢藻N8全基因组测序及磷吸收转运通路的比较分析[J]. 水生生物学报, 46(8): 1130-1141.
韩博平,林桂花,钟秀英,2006.水库蓝藻和蓝藻毒素的分布与检测—广东省典型供水水库研究[M]. 北京: 环境科学出版社: 7-8.
雷腊梅, 雷敏婷, 赵莉, 等, 2017. 入侵蓝藻——拟柱胞藻的分布特征及生理生态研究进展[J]. 生态环境学报, 26(3): 531-537.
雷敏婷, 彭亮, 韩博平, 等, 2018. 广东省水库拟柱孢藻(Cylindrospermopsis raciborskii)的分布特征及影响因子分析[J]. 环境科学, 39(12): 5523-5531.
李仁辉, 程耀, 耿若真, 等, 2022. 蓝藻拟柱孢藻(Cylindrospermopsis)和尖头藻(Raphidiopsis)的分与合[J]. 河南师范大学学报(自然科学版), 50(3): 39-46+165.
路琰, 雷敏婷, 叶金梅, 等, 2020. 广东省千灯湖拟柱孢藻(Cylindrospermopsis raciborskii)的形态和产毒能力的株间差异及系统进化[J]. 湖泊科学, 32(1): 144-153.
苏小妹, 薛庆举, 操庆, 等, 2017. 拟柱孢藻毒素生态毒性的研究进展和展望[J]. 生态毒理学报, 12(1): 64-72.
赵莉, 雷腊梅, 彭亮, 等, 2017. 广东省镇海水库拟柱孢藻(Cylindrospermopsis raciborskii)的季节动态及驱动因子分析[J]. 湖泊科学, 29(1): 193-199.
ANTUNES J T, LEÃO P N, VASCONCELOS V M, 2015. Cylindrospermopsis raciborskii: Review of the distribution, phylogeography, and ecophysiology of a global invasive species[J]. Front Microbiol, 6: 473.
BAI F, LIU R, YANG Y, et al, 2014. Dissolved organic phosphorus use by the invasive freshwater diazotroph cyanobacterium, Cylindrospermopsis raciborskii[J]. Harmful Algae, 39: 112-120.
BAR-YOSEF Y, SUKENIK A, HADAS O, et al, 2010. Enslavement in the water body by toxic Aphanizomenon ovalisporum, inducing alkaline phosphatase in phytoplanktons[J]. Curr Biol, 20(17): 1557-1561.
BERRY J P, LIND O, 2010. First evidence of “paralytic shellfish toxins” and cylindrospermopsin in a Mexican freshwater system, Lago Catemaco, and apparent bioaccumulation of the toxins in “tegogolo” snails (Pomacea patula catemacensis)[J]. Toxicon, 55(5): 930-938.
BURFORD M A, BEARDALL J, WILLIS A, et al, 2016. Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii[J]. Harmful Algae, 54: 44-53.
CAO X, XU X, BIAN R, et al, 2020. Sedimentary ancient DNA metabarcoding delineates the contrastingly temporal change of lake cyanobacterial communities[J]. Water Res, 183: 116077.
CIRÉS S, WÖRMER L, BALLOT A, et al, 2014. Phylogeography of cylindrospermopsin and paralytic shellfish toxin-producing nostocales cyanobacteria from Mediterranean Europe (Spain)[J]. Appl Environ Microbiol, 80(4): 1359-1370.
FALFUSHYNSKA H, HORYN O, BRZOZOWSKA A, et al, 2019. Is the presence of Central European strains of Raphidiopsis (Cylindrospermopsis) raciborskii a threat to a freshwater fish? An in vitro toxicological study in common carp cells[J]. Aquat Toxicol, 206: 105-113.
GAO X, WANG W, NDAYISHIMIYE J C, et al, 2022. Invasive and toxic cyanobacteria regulate allochthonous resource use and community niche width of reservoir zooplankton[J]. Freshw Biol, 67(8): 1344-1356.
GER K A, URRUTIA-CORDERO P, FROST P C, et al, 2016. The interaction between cyanobacteria and zooplankton in a more eutrophic world[J]. Harmful Algae, 54: 128-144.
GUGGER M, MOLICA R, Le BERRE B, et al, 2005. Genetic diversity of Cylindrospermopsis strains (cyanobacteria) isolated from four continents[J]. Appl Environ Microbiol, 71(2): 1097-1100.
HUISMAN J, CODD G A, PAERL H W, et al, 2018. Cyanobacterial blooms[J]. Nat Rev Microbiol, 16(8): 471-483.
ISVÁNOVICS V, SHAFIK H M, PRÉSING M, et al, 2000. Growth and phosphate uptake kinetics of the cyanobacterium, Cylindrospermopsis raciborskii (Cyanophyceae) in throughflow cultures[J]. Freshw Biol, 43(2): 257-275.
LEI L, LAI S, LIU W, et al, 2023. Chlorella pyrenoidosa mitigated the negative effect of cylindrospermopsin-producing and non-cylindrospermopsin-producing Raphidiopsis raciborskii on Daphnia magna as a dietary supplement[J]. Front Microbiol, 14: 1292277.
LEI L, PENG L, HUANG X, et al, 2014. Occurrence and dominance of Cylindrospermopsis raciborskii and dissolved cylindrospermopsin in urban reservoirs used for drinking water supply, South China[J]. Environ Monit Assess, 186(5): 3079-3090.
LU Z, LEI L, LU Y, et al, 2021. Phosphorus deficiency stimulates dominance of Cylindrospermopsis through facilitating cylindrospermopsin-induced alkaline phosphatase secretion: Integrating field and laboratory-based evidences[J]. Environ Pollut, 290: 117946.
LU Z, YE J, CHEN Z, et al, 2022. Cyanophycin accumulated under nitrogen-fluctuating and high-nitrogen conditions facilitates the persistent dominance and blooms of Raphidiopsis raciborskii in tropical waters[J]. Water Res, 214: 118215.
MIHALI T K, KELLMANN R, MUENCHHOFF J, et al, 2008. Characterization of the gene cluster responsible for cylindrospermopsin biosynthesis[J]. Appl Environ Microbiol, 74(3): 716-722.
NEILAN B A, SAKER M L, FASTNER J, et al, 2003. Phylogeography of the invasive cyanobacterium Cylindrospermopsis raciborskii[J]. Mol Ecol, 12(1): 133-140.
OHTANI I, MOORE R E, RUNNEGAR M T C, 1992. Cylindrospermopsin: a potent hepatotoxin from the blue-green alga Cylindrospermopsis raciborskii[J]. J Am Chem Soc, 114(20): 7941-7942.
PADISÁK J, 1997. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology[J]. Arch Für Hydrobiol Suppl Monogr Beitrage, 107(4): 563-593.
PENG L, XUE X G, TANG Q H, et al, 2020. Phosphorus retention and loss in three types of soils with implications for geographical pattern of eutrophication in China[J]. Wat Environ J, 34(S1): 9-18.
PICCINI C, AUBRIOT L, FABRE A, et al, 2011. Genetic and eco-physiological differences of South American Cylindrospermopsis raciborskii isolates support the hypothesis of multiple ecotypes[J]. Harmful Algae, 10(6): 644-653.
PRENTICE M J, HAMILTON D P, WILLIS A, et al, 2019. Quantifying the role of organic phosphorus mineralisation on phytoplankton communities in a warm-monomictic lake[J]. Inland Waters, 9(1): 10-24.
PRENTIS P J, WILSON J R U, DORMONTT E E, et al, 2008. Adaptive evolution in invasive species[J]. Trends Plant Sci, 13(6): 288-294.
SAX D F, STACHOWICZ J J, BROWN J H, et al, 2007. Ecological and evolutionary insights from species invasions[J]. Trends Ecol Evol, 22(9): 465-471.
SHI J Q, OU-YANG T, YANG S Q, et al, 2022. Transcriptomic responses to phosphorus in an invasive Cyanobacterium, Raphidiopsis raciborskii: Implications for nutrient management[J]. Harmful Algae, 111: 102150.
SINHA R, PEARSON L A, DAVIS T W, et al, 2014. Comparative genomics of Cylindrospermopsis raciborskii strains with differential toxicities[J]. BMC Genomics, 15: 83.
TAIPALE S J, VENTELÄ A M, LITMANEN J, et al, 2022. Poor nutritional quality of primary producers and zooplankton driven by eutrophication is mitigated at upper trophic levels[J]. Ecol Evol, 12(3): e8687.
VICO P, BONILLA S, CREMELLA B, et al, 2020. Biogeography of the cyanobacterium Raphidiopsis (Cylindrospermopsis) raciborskii: Integrating genomics, phylogenetic and toxicity data[J]. Mol Phylogenet Evol, 148: 106824.
WILLIS A, CHUANG A W, WOODHOUSE J N, et al, 2016. Intraspecific variation in growth, morphology and toxin quotas for the cyanobacterium, Cylindrospermopsis raciborskii[J]. Toxicon, 119: 307-310.
WOLOSZYNSKA J, 1912. Das Phytoplankton einiger Javanian Seen mit Berücksichtigung des Sawa-Planktons[J]. Bull Int Acad Sci Cracoviae Ser B, 6: 649-709.
WOOD S A, POCHON X, LUTTRINGER-PLU L, et al, 2014. Recent invader or indicator of environmental change? A phylogenetic and ecological study of Cylindrospermopsis raciborskii in New Zealand[J]. Harmful Algae, 39: 64-74.
WU Z, YANG S, SHI J, 2022. Overview of the distribution and adaptation of a bloom-forming cyanobacterium Raphidiopsis raciborskii: Integrating genomics, toxicity, and ecophysiology[J]. J Oceanol Limnol, 40(5): 1774-1791.
WU Z, ZENG B, LI R, et al, 2012. Physiological regulation of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) in response to inorganic phosphorus limitation[J]. Harmful Algae, 15: 53-58.
XIAO L J, XIE J, TAN L, et al, 2022. Iron enrichment from hypoxic hypolimnion supports the blooming of Raphidiopsis raciborskii in a tropical reservoir[J]. Water Res, 219: 118562.
XIAO M, HAMILTON D P, CHUANG A, et al, 2020. Intra-population strain variation in phosphorus storage strategies of the freshwater Cyanobacterium Raphidiopsis raciborskii[J]. FEMS Microbiol Ecol, 96(6): fiaa092.
XU H, QIN B, PAERL H W, et al, 2021. Environmental controls of harmful cyanobacterial blooms in Chinese inland waters[J]. Harmful Algae, 110: 102127.
YEMA L, LITCHMAN E, de TEZANOS PINTO P, 2016. The role of heterocytes in the physiology and ecology of bloom-forming harmful cyanobacteria[J]. Harmful Algae, 60: 131-138.
ZHANG J, SHI K, PAERL H W, et al, 2023a. Ancient DNA reveals potentially toxic cyanobacteria increasing with climate change[J]. Water Res, 229: 119435.
ZHANG X, HUANG Q, LIU P, et al, 2023b. Geography, ecology, and history synergistically shape across-range genetic variation in a calanoid copepod endemic to the north-eastern Oriental[J]. Evolution, 77(2): 422-436.
ZHENG L, LIU Y, LI R, et al, 2023. Recent advances in the ecology of bloom-forming Raphidiopsis (Cylindrospermopsis) raciborskii: Expansion in China, intraspecific heterogeneity and critical factors for invasion[J]. Int J Environ Res Public Health, 20(3): 1984.
0
浏览量
29
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构