中山大学航空航天学院,广东 深圳 518107
徐春光(1977年生),男;研究方向:高精度气动力;E-mail:xuchg5@mail.sysu.edu.cn
纸质出版日期:2025-01-15,
网络出版日期:2024-07-22,
收稿日期:2024-05-23,
录用日期:2024-06-03
移动端阅览
徐春光,张源耕.主动式气膜冷却对高超声速飞行器等离子体鞘套的影响[J].中山大学学报(自然科学版)(中英文),2025,64(01):250-256.
XU Chunguang,ZHANG Yuangeng.The influence of active gas film cooling on the plasma sheath of hypersonic vehicles[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2025,64(01):250-256.
徐春光,张源耕.主动式气膜冷却对高超声速飞行器等离子体鞘套的影响[J].中山大学学报(自然科学版)(中英文),2025,64(01):250-256. DOI: 10.13471/j.cnki.acta.snus.ZR20240173.
XU Chunguang,ZHANG Yuangeng.The influence of active gas film cooling on the plasma sheath of hypersonic vehicles[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2025,64(01):250-256. DOI: 10.13471/j.cnki.acta.snus.ZR20240173.
以钝锥模型为研究对象,采用热化学非平衡计算方法并结合可压缩 N-S方程、SST
<math id="M1"><mi>k</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=68780347&type=
2.28600001
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=68780349&type=
1.43933344
<math id="M2"><mo>-</mo><mi>ω</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=68780428&type=
2.28600001
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=68780431&type=
3.89466691
湍流模型,对钝锥模型肩部台阶喷流和头部逆向喷流流场进行了数值模拟。在考虑不同喷流压强、喷口位置和数量等因素的基础上,分析了主动式气膜冷却对等离子体鞘套的影响。结果表明:高超声速飞行器采用主动式气膜冷却技术时,喷口的数量、位置及喷流压强对等离子体密度均具有显著的影响。肩部的切向喷流可有效抑制模型壁面附近的等离子体密度,进而可能对高频电磁波的传输和目标雷达散射截面(RCS)产生影响。头部逆向喷流可显著改变等离子体的分布情况,不同的逆向喷流参数配置会导致明显的差异。
Utilizing a thermochemical non-equilibrium computational approach and employing compressible N-S equations along with the SST
<math id="M3"><mi>k</mi><mo>-</mo><mi>ω</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=68780417&type=
2.62466669
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=68780421&type=
8.55133343
turbulence model, numerical simulations were conducted for the flow fields of the shoulder step jet and the head reverse jet of the blunt cone model. Under different conditions of jet pressure, nozzle positions, and quantities, the effects of active gas film cooling on the sheath surrounding the hypersonic vehicle were meticulously analyzed. The results indicate that the number and position of the nozzles as well as the pressure of the jets in active gas film cooling for hypersonic vehicles significantly influence plasma density. Tangential jets at the shoulder effectively reduce plasma density near the model wall, potentially affecting the transmission of high-frequency electronic waves and target RCS(radar cross section). Meanwhile, reverse jets at the head can notably alter the distribution of head plasma. Different arrangements of reverse jets will lead to obvious differences in their effects.
高超声速飞行器等离子体鞘套主动式气膜冷却热化学非平衡双温模型
hypersonic vehicleplasma sheathactive gas film coolingthermochemical non-equilibrium calculationtwo-temperature model
常雨,2009. 超声速/高超声速等离子体流场数值模拟及其电磁特性研究[D].长沙:国防科技大学.
葛绍岩,刘登瀛,徐靖中,等,1985. 气膜冷却[M].北京:科学出版社.
胡海洋,王强,2008. 多重网格加速的LUSGS算法用于喷管流场数值模拟[J].推进技术,29(3):318-323.
刘存良,朱惠人,白江涛,2008. 收缩-扩张形气膜孔提高气膜冷却效率的机理研究[J].航空动力学报,23(4):598-604.
马平, 曾学军, 柳森,等, 2010.高超声速球模型尾迹电子密度试验研究[J].实验流体力学,24(1):20-25.
马平,石安华,杨益兼,等,2017.高速模型尾迹流场及其电磁散射特性相似性实验研究[J].物理学报,66(10):62-71.
王晓春,李娟,2019.扇形孔气膜冷却效果的数值模拟[J].苏州科技大学学报(自然科学版),36(2):61-65.
向树红,张敏捷,童靖宇,等,2015.高超声速飞行器主动式气膜冷却防热技术研究[J].装备环境工程,12(3):1-7.
向树红,商圣飞,沈自才,等,2020.高超声速气膜冷却技术研究进展及发展方向[J].宇航材料工艺,50(3):1-10.
张魏,邓明春,李广超,等,2012.扇形孔出口宽度对气膜冷却效率影响[J].热能动力工程,27(4):416-419.
GIUSEPPE P, ANTONIO V,2022. Hypersonic vehicles-applications, recent advances, and perspectives[M]. IntechOpen.
GRANTHAM W L,1971. Reentry plasma measyrements using a four-frequency reflectometer[R].NASA Special Publication,252:65-82.
GUPTA R N,YOS J M,THOMPSON R A,et al,1990.A review of reaction rates and thermodynamic and transport properties for an11-species air model for chemical and thermal nonequilibrium calculations to 30000K:NASA RP-1232[R].Washington, DC,USA:NASA.
HAYASHI K,ASO S,2003. Effect of pressure ratio on aerodynamic heating reduction due to opposing jet[C]//33rd AIAA Fluid Dynamic Conference and Exhibit.
MENTER F R,ZONA L,1993.Two equation k-ω turbulence models for aerodynamic flows[R].Reston, Virginia,USA:AIAA.
PARK C,1984. Problems of rate chemistry in the flight regimes of aeroassisted orbital transfer vehicles:AIAA-1984-1730[R]. Reston, Virginia,USA: AIAA.
PARTON V Z,2018. Super-and hypersonic aerodynamics and heat transfer[M]. CRC Press.
RAJESH K P,ARUN K P,BABJI G,2024.Flow structure comparison of film cooling versus hybrid cooling:A CFD study[J]. Int J Turbo Jet Engines,41(2):227-240.
ROY F,2006. US hypersonic research and development[M].Taylor and Francis.
RYBAK J P,CHURCHILL R J,2018.Progress in reentry communications[J].IEEE Trans Aerosp Electron Syst,7(5): 879-894.
SARGISON J E,GUO S M,OLDFIELD M L G,et al,2002a.A converging slot-hole film-cooling geometry-Part 1:Low-speed flat-plate heat transfer and loss[J]. J Turbomach,124(3):453-460.
SARGISON J E,GUO S M,OLDFIELD M L G, et al,2002b.A converging slot-hole film-cooling geometry-Part 2:Transonie nozzle guide vane heat transfer and loss[J]. J Turbomach,124(3):461-471.
SERGEY V U,TIRSKIY G A,2013. Hypersonic aerodynamics and heat transfer[M]. Begell House Inc.
WILKINS P H,LYNCH S P,THOLE K A,et al,2022. Effect of a ceramic matrix composite surface on film cooling[J].J Turbomach,144(8):081014.
WU Z, ZHU H R,LI L, et al, 2022. Experimental study of the effect of swirling inflow on film cooling effectiveness[J].Case Stud Therm Eng, 32:101871.
0
浏览量
38
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构