1.鲁东大学生命科学学院, 山东 烟台264025
2.烟台市森林资源监测保护服务中心,山东 烟台 264001
朱萍(1987年生),女;研究方向:微生物生态学;E-mail:zhuping@ldu.edu.cn
柏新富(1964年生),男;研究方向:植物生态学;E-mail:bxf64@163.com
纸质出版日期:2024-11-25,
网络出版日期:2024-07-22,
收稿日期:2024-05-23,
录用日期:2024-06-03
移动端阅览
朱萍,刘文燕,刘展航等.昆嵛山常见林型土壤细菌的群落结构及多样性分析[J].中山大学学报(自然科学版)(中英文),2024,63(06):132-140.
ZHU Ping,LIU Wenyan,LIU Zhanhang,et al.Community structure and diversity of soil bacteria in different common forest types in Kunyu Mountain[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(06):132-140.
朱萍,刘文燕,刘展航等.昆嵛山常见林型土壤细菌的群落结构及多样性分析[J].中山大学学报(自然科学版)(中英文),2024,63(06):132-140. DOI: 10.13471/j.cnki.acta.snus.ZR20240171.
ZHU Ping,LIU Wenyan,LIU Zhanhang,et al.Community structure and diversity of soil bacteria in different common forest types in Kunyu Mountain[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(06):132-140. DOI: 10.13471/j.cnki.acta.snus.ZR20240171.
本研究依托国家级自然保护区昆嵛山,分析其常见林型的土壤细菌群落结构与多样性,研究林分差异对土壤细菌群落的影响,为该区域森林健康和可持续发展提供理论支持,同时加深对植物与微生物之间相互作用的认识。选取赤松林(
Pinus densiflora
forest)、麻栎林(
Quercus acutissima
forest)、赤松-麻栎混交林、刺槐林(
Robinia pseudoacacia
forest)和杂木林为研究对象,以无林地为对照,利用16S rRNA基因高通量测序技术分析了6种林型下土壤细菌多样性、群落组成的差异,及其与土壤化学性质的关系。结果显示:变形菌门(Proteobacteria)是优势菌门,其次主要类群有酸杆菌门(Acidobacteria)、放线菌门(Actinobacteria)、绿弯菌门(Chloroflexi)等。不同林型显著影响土壤细菌群落丰富度、均匀度指数,其中麻栎林土壤细菌多样性指数最高,混交林土壤细菌多样性指数最低,麻栎林土壤的ACE指数和Shannon指数均显著高于赤松林、杂木林、刺槐林和混交林。不同林型土壤细菌多样性变化可能与土壤pH值差异密切相关。NMDS和ANOSIM分析显示不同林型间土壤细菌群落结构具有显著差异(
P
<
0.05),推断不同林型间植物凋落物及根系分泌物差异可能是驱动细菌群落变化的重要原因;此外,对环境因子与土壤细菌群落结构差异的关联分析显示,土壤全磷与有效磷含量可能是影响昆嵛山不同林型土壤细菌群落结构差异的关键环境因子。本研究从细菌多样性和群落结构对林型变化响应的角度,为探索温带森林生态系统健康管理提供了科学依据。
In present study, we investigated the community structure and diversity of soil bacteria in five common forest types in Kunyu Mountain, and explored the underlying mechanisms of effect of stand difference on soil bacteria, aiming to provide theoretical foundation for forest health recognition and sustainable forest management locally, and deepen the understanding on the interaction between
plant and microorganism. Six common forest types in Kunyu Mountain, including
Pinus densiflora
,
Quercusa acutissima,
mixed
P. densiflora
-
Q. cutissima
,
Robinia pseudoacacia,
and miscellaneous broadleaved mixed forest were selected as the research objects, and the non-forest land was selected as the control. The community structure and diversity of soil bacteria under these forest types were analyzed using high-throughput sequencing of 16S rDNA genes, as well as the soil chemical properties. The results showed that, the α diversity of soil flora in
Q. acutissima
forest, as well as in the control was significantly higher than that in other forest types, NMDS analysis showed there were significant differences in bacterial community structure among forest types (
P
<
0.05). The three flora with the highest relative abundance at the phylum level were Proteobacteria, Acidobacteria, and Actinobacteria. The soil of mixed
P. densiflora
-
Q. acutissima
showed the lowest pH, while the miscellaneous forest showed obviously higher SOM (99.92 g/kg) and available nitrogen (317.24 mg/kg) than that of other forest types. The
R. pseudoacacia
forest showed the highest available phosphorus (78.8 mg/kg) among all forest types, and all forest types showed higher soil nutrients than the control. Canonical correlation analysis (CCA) indicated that the SOM, total phosphorus, and available phosphorus significantly impacted the bacterial community, and Mantel test further confirmed that the latter two factors took the main charge. Above all, our results revealed that, in Kunyu Mountain, the vegetation types had a significant impact on the soil bacterial community structure, and the soil total phosphorus and available phosphorus may play a key role therein.
土壤微生物细菌多样性群落结构麻栎林刺槐林
soil microbesbacterial diversitycommunity structureQuercusa acutissima forestRobinia pseudoacacia forest
鲍士旦, 2000. 土壤农化分析 [M]. 3版.北京: 中国农业出版社.
丁新景, 黄雅丽, 敬如岩, 等, 2018. 基于高通量测序的黄河三角洲4种人工林土壤细菌结构及多样性研究[J]. 生态学报, 38(16): 5857-5864.
丁新景, 敬如岩, 黄雅丽, 等, 2017. 黄河三角洲刺槐根际与非根际细菌结构及多样性[J]. 土壤学报, 54(5): 1293-1302.
丁钰珮, 杜宇佳, 高广磊, 等, 2021. 呼伦贝尔沙地樟子松人工林土壤细菌群落结构与功能预测[J]. 生态学报, 41(10): 4131-4139.
耿玉清, 余新晓, 岳永杰, 等, 2009. 北京山地针叶林与阔叶林土壤活性有机碳库的研究[J]. 北京林业大学学报, 31(5): 19-24.
胡瑞瑞, 梁军, 谢宪, 等, 2020. 昆嵛山林区赤松赤枯病病基指数模型[J]. 林业科学, 56(1): 112-119.
姜雪薇, 马大龙, 臧淑英, 等, 2021. 高通量测序分析大兴安岭典型森林土壤细菌和真菌群落特征[J]. 微生物学通报, 48(4): 1093-1105.
李岩, 杨晓东, 秦璐, 等, 2018. 两种盐生植物根际土壤细菌多样性和群落结构[J]. 生态学报, 38(9): 3118-3131.
刘君, 王宁, 崔岱宗, 等, 2019. 小兴安岭大亮子河国家森林公园不同生境下土壤细菌多样性和群落结构[J]. 生物多样性, 27(8): 911-918.
路颖, 李坤, 梁强, 等, 2019. 泰山4种优势造林树种叶片凋落物分解对凋落物内细菌群落结构的影响[J]. 生态学报, 39(9): 3175-3186.
路颖, 李坤, 倪瑞强, 等, 2018. 泰山4种优势造林树种细根分解对细菌群落结构的影响[J]. 植物生态学报, 42(12): 1200-1210.
潘琪, 梁军, 倪杨, 等, 2015. 昆嵛山腮扁叶蜂与乔木层树种的联结性分析[J]. 林业科学, 51(10): 85-92.
孙海, 王秋霞, 张春阁, 等, 2018. 不同树叶凋落物对人参土壤理化性质及微生物群落结构的影响[J]. 生态学报, 38(10): 3603-3615.
滕嘉玲, 贾荣亮, 赵芸, 2017. 沙埋对干旱沙区真藓结皮层细菌群落结构和多样性的影响[J]. 生态学报, 37(7): 2179-2187.
王安宁, 黄秋娴, 李晓刚, 等, 2019. 冀北山区不同植被恢复类型根际土壤细菌群落结构及多样性[J]. 林业科学, 55(9): 130-141.
王仁卿, 周光裕, 2000. 山东植被[M]. 济南: 山东科学技术出版社.
王欣, 郭延朋, 赵辉, 等, 2018. 华北落叶松与白桦叶凋落物混合分解及其养分动态[J]. 林业与生态科学, 33(1): 29-36.
王玉涛, 郭卫华, 刘建, 等, 2009. 昆嵛山自然保护区生态系统服务功能价值评估[J]. 生态学报, 29(1): 523-531.
张静, 温仲明, 李鸣雷, 等, 2018. 外来物种刺槐对土壤微生物功能多样性的影响[J]. 生态学报, 38(14): 4964-4974.
张晓, 刘世荣, 黄永涛, 等, 2019. 辽东栎林演替过程中的土壤细菌群落结构和多样性变化[J]. 林业科学, 55(10): 193-202.
张学雷, 肖光平, 1993. 昆嵛山山麓土壤的发生与特性[J]. 山东师大学报(自然科学版), 8(4): 14-18.
朱平, 陈仁升, 宋耀选, 等, 2015. 祁连山不同植被类型土壤微生物群落多样性差异[J]. 草业学报, 24(6): 75-84.
朱彦鹏, 梁军, 孙志强, 等, 2013. 昆嵛山森林群落数量分类、排序及多样性垂直格局[J]. 林业科学, 49(4): 54-61.
CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al, 2010. QIIME allows analysis of high-throughput community sequencing data[J]. Nat Methods, 7(5): 335-336.
CAPORASO J G, LAUBER C L, WALTERS W A, et al, 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample[J]. Proc Natl Acad Sci USA, 108(Suppl 1): 4516-4522.
CHEN P D, HOU Y P, ZHUGE Y H, et al, 2019. The effects of soils from different forest types on the growth of the invasive plant Phytolacca americana[J]. Forests, 10(6): 492-506.
EDGAR R C, 2010. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics, 26(19): 2460-2461.
GAO G F, LI P F, ZHONG J X, et al, 2019. Spartina alterniflora invasion alters soil bacterial communities and enhances soil N2O emissions by stimulating soil denitrification in mangrove wetland[J]. Sci Total Environ, 653: 231-240.
HENNERON L, CHAUVAT M, ARCHAUX F, et al, 2017. Plant interactions as biotic drivers of plasticity in leaf litter traits and decomposability of Quercus petraea[J]. Ecol Monogr, 87(2): 321-340.
KAISER K, WEMHEUER B, KOROLKOW V, et al, 2016. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests[J]. Sci Rep, 6: 33696-33707.
LING N, CHEN D, GUO H, et al, 2017. Differential responses of soil bacterial communities to long-term N and P inputs in a semi-arid steppe[J]. Geoderma, 292: 25-33.
LIU D, YANG Y, AN S S, et al, 2018. The biogeographical distribution of soil bacterial communities in the Loess Plateau as revealed by high-throughput sequencing[J]. Front Microbiol, 9: 2456-2469.
LIU M, HAN G, 2020. Assessing soil degradation under land-use change: Insight from soil erosion and soil aggregate stability in a small Karst Catchment in southwest China[J]. PeerJ, 8(4): e8908.
NGOM A, NAKAGAWA Y, SAWADA H, et al, 2004. A novel symbiotic nitrogen-fixing member of the Ochrobactrum clade isolated from root nodules of Acacia mangium[J]. J Gen Appl Microbiol, 50(1): 17-27.
ROUSK J, BROOKES P C, BÅÅTH E, 2009. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization[J]. Appl Environ Microbiol, 75(6): 1589-1596.
SALEEM M, HU J, JOUSSET A, 2019. More than the sum of its parts: Microbiome biodiversity as a driver of plant growth and soil health[J]. Annu Rev Ecol Evol Syst, 50: 145-168.
SUN H, WANG Q X, LIU N, et al, 2017. Effects of different leaf litters on the physicochemical properties and bacterial communities in Panax ginseng-growing soil[J]. Appl Soil Ecol, 111: 17-24.
SUN L, LU Y F, KRONZUCKER H J, et al, 2016. Quantification and enzyme targets of fatty acid amides from duckweed root exudates involved in the stimulation of denitrification[J]. J Plant Physiol, 198: 81-88.
WANG Y S, LI C N, KOU Y P, et al,2017. Soil pH is a major driver of soil diazotrophic community assembly in Qinghai-Tibetalpine meadows[J]. Soil Biol Biochem, 115: 547-555.
XUE Y F, TIAN J, QUINE T A, et al, 2020. The persistence of bacterial diversity and ecosystem multifunctionality along a disturbance intensity gradient in Karst soil[J]. Sci Total Environ, 748: 142381-142392.
ZHANG C, SONG Z L, ZHUANG D H, et al, 2019. Urea fertilization decreases soil bacterial diversity, but improves microbial biomass, respiration, and N-cycling potential in a semiarid grassland[J]. Biol Fertil Soils, 55(3): 229-242.
ZHANG Z J, QU Y Y, LI S Z, et al, 2017. Soil bacterial quantification approaches coupling with relative abundances reflecting the changes of taxa[J]. Sci Rep, 7(1): 4837-4847.
0
浏览量
46
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构