1.广东省农业科学院农业质量标准与监测技术研究所,广东 广州 510640
2.农业农村部农产品质量安全风险评估实验室(广州),广东 广州 510640
3.岭南现代农业科学与技术广东省实验室河源分中心,广东 河源 517000
4.广东农科监测科技有限公司,广东 广州 510640
李富荣(1984年生),女;研究方向:蔬菜质量安全调控;E-mail:lifurong@gdaas.cn
王旭(1982年生),女;研究方向:农产品质量安全;E-mail:wangxu@gdaas.cn
纸质出版日期:2024-11-25,
网络出版日期:2024-07-23,
收稿日期:2024-05-20,
录用日期:2024-05-27
移动端阅览
李富荣,王琳清,曹怡然等.硼对菜心镉吸收及抗氧化酶和AsA-GSH循环关键酶活性的调控效应[J].中山大学学报(自然科学版)(中英文),2024,63(06):141-149.
LI Furong,WANG Linqing,CAO Yiran,et al.The regulatory effects of exogenous boron on the cadmium absorption and antioxidant enzyme and AsA-GSH cycle key enzyme activity in Chinese flowering cabbage[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(06):141-149.
李富荣,王琳清,曹怡然等.硼对菜心镉吸收及抗氧化酶和AsA-GSH循环关键酶活性的调控效应[J].中山大学学报(自然科学版)(中英文),2024,63(06):141-149. DOI: 10.13471/j.cnki.acta.snus.ZR20240166.
LI Furong,WANG Linqing,CAO Yiran,et al.The regulatory effects of exogenous boron on the cadmium absorption and antioxidant enzyme and AsA-GSH cycle key enzyme activity in Chinese flowering cabbage[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(06):141-149. DOI: 10.13471/j.cnki.acta.snus.ZR20240166.
针对华南地区旱地土壤低硼高镉和蔬菜重金属镉污染日益严重的现状,以广东特色蔬菜菜心(
Brassica parachinensis
L)为研究对象,通过水培实验研究了外源硼添加对菜心生长特性和镉吸收的调控效应,并从抗氧化酶和AsA-GSH循环关键酶活性的角度探讨硼调控蔬菜镉胁迫的生理机制。研究结果显示,在5 μmol/L的镉处理下,20和50 μmol/L的外源硼添加显著提高菜心株高和根长达50%以上,同时,50 μmol/L的外源硼添加较0.25 μmol/L硼添加时的地上部和地下部生物量都明显增加114.19%和187.59%,说明适当施加硼元素供应能有效缓解重金属镉对蔬菜的胁迫作用。另外,10、20、50 μmol/L 3种浓度的外源硼添加都不同程度地减少了菜心地上部和地下部的镉吸收,下降量达24.0%。从硼影响菜心的抗氧化酶活性和AsA-GSH循环关键酶活性的结果来看,镉胁迫下添加不同浓度外源硼处理后,不同菜心抗氧化酶和AsA-GSH循环关键酶活性变化规律存在一定差异。本文研究结论为,适宜浓度的硼添加可有效提高镉胁迫下的菜心地上部分和地下部分的SOD、POD、CAT、APX、DHAR、GR活性,增强菜心的抗氧化能力,促进其AsA-GSH循环,从而降低镉对菜心植株的胁迫作用并调控菜心对镉的吸收。这意味着有可能通过筛选适合的硼肥类别和施用量,进一步实现控制蔬菜可食部分镉含量在安全限量范围内,研究结论可为合理施用硼肥保障中轻度镉污染土壤上的蔬菜安全种植提供科学的参考依据。
To solve the present situation of low boron and high cadmium in dryland soils and increasingly serious cadmium pollution in vegetables in southern China, in this study, we chose the Guangdong specialty vegetable Chinese flowering cabbage (
Brassica parachinensis
L) as the research object and performed to study the regulatory effects of exogenous boron addition on its growth characteristics and cadmium absorption. The vegetable physiological mechanism of boron regulation under cadmium stress was also explored from the perspectives of antioxidant enzymes and AsA-GSH cycle key enzyme activities. The results showed that under 5 μmol/L cadmium treatment, 20 and 50 μmol/L exogenous boron addition significantly increased the plant height and root length of Chinese flowering cabbage by more than 50%, and the aboveground and underground biomass was increased significantly by 114.19% and 187.59% with 50 μmol/L boron addition compared with the 0.25 μmol/L boron. The results indicated that appropriate application of boron supply would effectively alleviate the cadmium stress on vegetable growth. Additionally, the addition of exogenous boron as 10, 20 and 50 μmol/L could reduce cadmium absorption to 24.0% in the aboveground and underground parts of Chinese f
lowering cabbage. We also found that there were differences in the activity changes of antioxidant enzymes and AsA-GSH cycle key enzymes with different exogenous boron addition under cadmium stress. Overall, it can be concluded that the appropriate concentration of boron addition could effectively improve the SOD, POD, CAT, APX, DHAR and GR activities of the aboveground and underground parts of Chinese flowering cabbage under cadmium stress, to enhance its antioxidant capacity and promote its AsA-GSH cycle, thereby reducing the stress effect and cadmium absorption. Accordingly, screening suitable boron fertilizer categories and application rates would further achieve control over the cadmium contents in edible parts of vegetables within their safe limits. This conclusion would provide a scientific reference for rational application of boron fertilizer to ensure the safe planting of vegetables on farmland soil with moderate to mild cadmium pollution.
硼菜心(Brassica parachinensis L)镉酶活性AsA-GSH循环
boronChinese flowering cabbage (Brassica parachinensis L)cadmiumenzymatic activityAsA-GSH cycle
耿国涛, 陆志峰, 张洋洋, 等, 2023. 硼肥用量对双低油菜籽产量和品质的影响[J]. 植物营养与肥料学报, 29(5): 924-934.
拉飞克, 施国新, 王学, 等, 2003. 硼对镉胁迫下槐叶萍生理生化特性的影响[J]. 南京师范大学学报(自然科学版), 26(3): 72-75.
李富荣, 徐爱平, 吴志超, 等, 2020. 大湾区根茎类蔬菜-农田土壤系统中10种重金属吸收特性及其种植安全性研究[J]. 生态环境学报, 29(6): 1251-1259.
刘登彪, 蒋成爱, 张嘉慧, 等, 2014. 不同硼浓度对三种超富集植物吸收硼及重金属的影响[J]. 农业环境科学学报, 33(6): 1106-1111.
刘梅, 李祖然, 张光群, 等, 2021. 野生小花南芥体内AsA-GSH循环对土壤Cd、Pb胁迫的响应[J]. 农业资源与环境学报, 38(4): 558-569.
邵鹏, 刘士哲, 李淑仪, 等, 2010. 硼钼镁对菜心产量及养分吸收的影响[J]. 长江蔬菜, 24: 58-62.
苏文欣, 许凌欣, 姜宛彤, 等, 2022. 不同外源物质对盐碱胁迫下紫苏种子萌发、幼苗生长及生理的影响[J]. 草地学报, 30(9): 2415-2422.
肖艳辉, 何金明, 潘春香, 等, 2015. 茴香对镉胁迫下钼硼锌协同处理的响应及精油组分的影响[J]. 生态环境学报, 24(9): 1570-1575.
张敏, 谢运球, 蔡五田, 等, 2010. 岩溶土壤硼镉交互作用对花生的影响[J]. 中国农学通报, 26(24): 287-294.
AHMAD P, AHANGER M A, ALYEMENI M N, et al, 2018. Exogenous application of nitric oxide modulates osmolyte metabolism, antioxidants, enzymes of ascorbate-glutathione cycle and promotes growth under cadmium stress in tomato[J]. Protoplasma, 255(1): 79-93.
APONTE H, MELI P, BUTLER B, et al, 2020. Meta-analysis of heavy metal effects on soil enzyme activities[J]. Sci Total Environ, 737: 139744.
CZARNOCKA W, KARPIŃSKI S, 2018. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses[J]. Free Radic Biol Med, 122: 4-20.
DEUTSCH J C, 2000. Dehydroascorbic acid[J]. J Chromatogr A, 881(1/2): 299-307.
DOULIS A G, DEBIAN N, KINGSTON-SMITH A H, et al, 1997. Differential localization of antioxidants in maize leaves[J]. Plant Physiol, 114(3): 1031-1037.
GAO W, WU D, ZHANG D, et al, 2024. Comparative analysis of the effects of microplastics and nitrogen on maize and wheat: Growth, redox homeostasis, photosynthesis, and AsA-GSH cycle[J]. Sci Total Environ, 932: 172555.
GUI J Y, RAO S, HUANG X, et al, 2022. Interaction between selenium and essential micronutrient elements in plants: A systematic review[J]. Sci Total Environ, 853: 158673.
GUTSCH A, ZOUAGHI S, RENAUT J, et al, 2018. Changes in the proteome of Medicago sativa leaves in response to long-term cadmium exposure using a cell-wall targeted approach[J]. Int J Mol Sci, 19(9): 2498.
HUANG Y Y, FEI G, YU S L, et al, 2021. Molecular and biochemical mechanisms underlying boron-induced alleviation of cadmium toxicity in rice seedlings[J]. Ecotoxicol Environ Saf, 225: 112776.
HUANG Y, HUANG B, SHEN C, et al, 2022. Boron supplying alters cadmium retention in root cell walls and glutathione content in Capsicum annuum[J]. J Hazard Mater, 432: 128713.
KUMAR A, KUMARI N, SINGH A, et al, 2023a. The effect of cadmium tolerant plant growth promoting rhizobacteria on plant growth promotion and phytoremediation: A review[J]. Curr Microbiol, 80(5): 153.
KUMAR D, MALIK S, RANI R, et al, 2023b. Behavior, risk, and bioremediation potential of heavy metals/metalloids in the soil system[J]. Rend Lincei-Sci Fis, 34: 809-831.
KUMAR V, PANDITA S, KAUR R, et al, 2022. Biogeochemical cycling, tolerance mechanism and phytoremediation strategies of boron in plants: A critical review[J]. Chemosphere, 300: 134505.
LAN P D T, NGUYEN H T, THI K V, et al, 2023. Insights into the remediation of cadmium-contaminated vegetable soil: Co-application of low-cost by-products and microorganism[J]. Water Air Soil Pollut, 234(5): 293.
LI F, WANG X, WANG F, et al, 2021. A risk-based approach for the safety analysis of eight trace elements in Chinese flowering cabbage (Brassica parachinensis L.) in China[J]. J Sci Food Agr, 101(13): 5583-5590.
LI F, LIU H, ZHONG H, et al, 2024. Effects of biochar combined with nitrogen fertilizer on ryegrass remediation of cadmium-contaminated soil[J]. Int J Environ Sci Te, 21(4): 4201-4212.
LI H, LUO N, ZHANG L J, et al, 2016. Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics, subcellular distribution and chemical forms in rice?[J]. Sci Total Environ, 571: 1183-1190.
LI N, LIU J, YANG L, et al, 2022. Synergistic effect of antioxidant systems enhance cadmium phytoextraction and translocation in Amaranthus hypochondriacus under rutin application[J]. S Afr J Bot, 149: 582-590.
MAL S, SARKAR D, MANDAL B, et al, 2023. Determination of critical concentrations of boron in soils and leaves of tomato (Lycopersicon esculentum L.) using polynomial equation[J]. J Soil Sci Plant Nut, 23(3): 4055-4065.
MEENA V, DOTANIYA M L, SAHA J K, et al, 2022. Silicon potential to mitigate plant heavy metals stress for sustainable agriculture: A review[J]. Silicon, 14(9): 4447-4462.
NAKANO Y, ASADA K, 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant Cell Physiol, 22(5): 867-880.
NORDBERG G F, 2009. Historical perspectives on cadmium toxicology[J]. Toxicol Appl Pharm, 238(3): 192-200.
PAN C, LU H, LIU J, et al, 2020. SODs involved in the hormone mediated regulation of H2O2 content in Kandelia obovata root tissues under cadmium stress[J]. Environ Pollut, 256: 113272.
QIN S, LIU H, RENGEL Z, et al, 2020. Boron inhibits cadmium uptake in wheat (Triticum aestivum) by regulating gene expression[J]. Plant Sci, 297: 110522.
RIAZ M, YAN L, WU X, et al, 2018. Boron reduces aluminum-induced growth inhibition, oxidative damage and alterations in the cell wall components in the roots of trifoliate orange[J]. Ecotoxicol Environ Saf, 153: 107-115.
SCHEIBLE W R, GONZALEZ-FONTES A, LAUERER M, et al, 1997. Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco[J]. Plant Cell, 9(5): 783-798.
SEO C, LEE J W, JEONG J W, et al, 2023. Current technologies for heavy metal removal from food and environmental resources[J]. Food Sci Biotechnol, 33(2): 287-295.
SHAH K, NAHAKPAM S, 2012. Heat exposure alters the expression of SOD, POD, APX and CAT isozymes and mitigates low cadmium toxicity in seedlings of sensitive and tolerant rice cultivars[J]. Plant Physiol Bioch, 57: 106-113.
SINGH R, PARIHAR P, PRASAD S M, 2020. Sulphur and calcium attenuate arsenic toxicity in Brassica by adjusting ascorbate-glutathione cycle and sulphur metabolism[J]. Plant Growth Regul, 91(2): 221-235.
SUN F, WANG F, WANG X, et al, 2013. Soil threshold values of total and available cadmium for vegetable growing based on field data in Guangdong Province, South China[J]. J Sci Food Agr, 93(8): 1967-1973.
TANG M, LI R, CHEN P, 2023. Exogenous glutathione can alleviate chromium toxicity in kenaf by activating antioxidant system and regulating DNA methylation[J]. Chemosphere, 337: 139305.
ULUISIK I, KARAKAYA H C, KOC A, 2018. The importance of boron in biological systems[J]. J Trace Elem Med Bio, 45: 156-162.
WEI R, CHEN C, KOU M, et al, 2023. Heavy metal concentrations in rice that meet safety standards can still pose a risk to human health[J]. Commun Earth Environ, 4: 84.
WU X, RIAZ M, YAN L, et al, 2017. Boron deficiency in trifoliate orange induces changes in pectin composition and architecture of components in root cell walls[J]. Front Plant Sci, 8: 1882.
WU X, SONG H, GUAN C, et al, 2020a. Boron alleviates cadmium toxicity in Brassica napus by promoting the chelation of cadmium onto the root cell wall components[J]. Sci Total Environ, 728: 138833.
WU X, SONG H, GUAN C, et al, 2020b. Boron mitigates cadmium toxicity to rapeseed (Brassica napus) shoots by relieving oxidative stress and enhancing cadmium chelation onto cell walls[J]. Environ Pollut, 263: 114546.
WU Z, WANG F, LIU S, et al, 2016. Comparative responses to silicon and selenium in relation to cadmium uptake, compartmentation in roots, and xylem transport in flowering Chinese cabbage (Brassica campestris L.ssp chinensis var. utilis) under cadmium stress[J]. Environ Exp Bot, 13: 173-180.
WU Z, XU S, SHI H, et al, 2018. Comparison of foliar silicon and selenium on cadmium absorption, compartmentation, translocation and the antioxidant system in Chinese flowering cabbage[J]. Ecotoxicol Environ Saf, 166: 157-164.
XUE W, ZHANG X, ZHANG C, et al, 2023. Mitigating the toxicity of reactive oxygen species induced by cadmium via restoring citrate valve and improving the stability of enzyme structure in rice[J]. Chemosphere, 327: 138511.
0
浏览量
42
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构