中山大学生命科学学院 / 广东省热带亚热带植物资源与利用重点实验室,广东 广州510275
陈宝明(1972年生),男;研究方向:入侵生态学;E-mail:chenbaom@mail.sysu.edu.cn
纸质出版日期:2024-11-25,
网络出版日期:2024-07-22,
收稿日期:2024-05-16,
录用日期:2024-05-23
移动端阅览
陈宝明.昼夜增温对外来入侵植物竞争力的影响[J].中山大学学报(自然科学版)(中英文),2024,63(06):114-121.
CHEN Baoming.Effects of day and night warming on growth and competitive ability of invasive alien plants[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(06):114-121.
陈宝明.昼夜增温对外来入侵植物竞争力的影响[J].中山大学学报(自然科学版)(中英文),2024,63(06):114-121. DOI: 10.13471/j.cnki.acta.snus.ZR20240158.
CHEN Baoming.Effects of day and night warming on growth and competitive ability of invasive alien plants[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(06):114-121. DOI: 10.13471/j.cnki.acta.snus.ZR20240158.
全球存在明显的昼夜不对称增温现象,光合作用只在白天发生,而呼吸作用在白天和晚上都在进行,昼夜增温可能会改变光合作用和呼吸作用之间的平衡,进而影响植物的生长。入侵植物通常具有较强的资源捕获能力与能量利用效率,那么在昼夜增温对外来入侵植物的生长及竞争力有何影响?为此,选取两种严重危害的菊科入侵植物白花鬼针草(
Bidens alba
)和假臭草(
Eupatorium catarium
),同时选取本地植物一点红(
Emilia sonchifolia
)作为对照,设置不同的昼夜增温处理,研究增温对入侵植物和本地植物的生物长、生物量分配及种间竞争的影响。结果表明,白天增温显著提高了入侵植物白花鬼针草和假臭草的总生物量和地上生物量,而全天增温显著提高了本地植物一点红的总生物量和地上生物量;白花鬼针草在全天增温处理下的根冠比显著高于其他增温处理的,而其他2种植物的根冠比在全天增温处理下最低。夜间增温和全天增温加剧了入侵植物对本地植物一点红生长的抑制作用;3种增温模式都不同程度地降低了两种入侵植物对一点红的竞争响应,但不同增温模式之间差异并不显著,说明增温背景下本地植物一点红对入侵植物的竞争响应并未表现出明显的竞争者依赖性。
There is an obvious diurnal asymmetrical warming around the world. Photosynthesis takes place at daytime, while respiration occurs through day and night. Day and night warming may change the balance between photosynthesis and respiration, consequently influencing plant growth. Invasive alien plants usually have stronger resource capture ability and energy use efficiency relative to native plants. What is the effect of day and night warming on the growth and competitiveness of invasive plants? Thus, two invasive plants
Bidens alba
(also called
Bidens pilosa
) and
Eupatorium catarium
, and a native plant
Emilia sonchifolia
were selected. The effects of warming on plant growth, biomass allocation and inter-competition of invasive plants and native plants were studied. The results showed that daytime warming significantly increased the total biomass and aboveground biomass of the two invasive plants, while whole day warming significantly increased the total biomass and aboveground biomass of the native plants. The root-shoot ratio of
B. alba
under whole-day warming was significantly higher than that under other warming treatments, while the root-shoot ratio of the other two plants was the lowest under whole-day warming. Night warming and whole day warming promoted the inhibitory effect of invasive plants on native plants. All three warming treatments reduced the competitive response of the two invasive plants to
E. sonchifolia
, but the difference
between different warming treatments was not significant, indicating that the competitive response of native plants to
E. sonchifolia
did not show significant competitor dependence.
全球变暖外来植物入侵性
global warmingexotic plantsinvasiveness
褚延梅, 杨健, 李景吉, 等, 2014. 三种增温情景对入侵植物空心莲子草形态可塑性的影响[J]. 生态学报, 34(6): 1411-1417.
彭扬, 李景吉, 彭培好, 2016. 三种增温情景对入侵植物紫茎泽兰种子出苗的影响[J]. 生态科学, 35(5): 50-55.
张桥英, 彭少麟, 2018. 增温对入侵植物马缨丹生物量分配和异速生长的影响[J]. 生态学报, 38(18): 6670-6676.
ARMAS C, ORDIALES R, PUGNAIRE F I, 2004. Measuring plant interactions: A new comparative index[J]. Ecology, 85(10): 2682-2686.
ATKIN O K, EDWARDS E J, LOVEYS B R, 2000. Response of root respiration to changes in temperature and its relevance to global warming[J]. New Phytol,147(1):141-154.
BAIS H P, VEPACHEDU R, GILROY S, et al, 2003. Allelopathy and exotic plant invasion: from molecules and genes to species interactions[J]. Science, 301(5638): 1377-1380.
BLUMENTHAL D M, KRAY J A, ORTMANS W, et al, 2016. Cheatgrass is favored by warming but not CO2 enrichment in a semi-arid grassland[J]. Glob Change Biol, 22(9): 3026-3038.
BRADLEY B A, BLUMENTHAL D M, WILCOVE D S, et al, 2010. Predicting plant invasions in an era of global change[J]. Trends Ecol Evol, 25(5): 310-318.
CAHILL Jr J F, MCNICKLE G G, HAAG J J, et al, 2010. Plants integrate information about nutrients and neighbors[J]. Science, 328(5986): 1657.
CALLAWAY R, NEWINGHAM B, ZABINSKI C A, et al, 2001. Compensatory growth and competitive ability of an invasive weed are enhanced by soil fungi and native neighbours[J]. Ecol Lett, 4(5): 429-433.
CALLAWAY R M, RIDENOUR W M, 2004. Novel weapons: Invasive success and the evolution of increased competitive ability[J]. Front Ecol Environ, 2(8): 436-443.
CARLEN C, KÖLLIKER R, NÖSBERGER J, 1999. Dry matter allocation and nitrogen productivity explain growth responses to photoperiod and temperature in forage grasses[J]. Oecologia, 121(4): 441-446.
CASPER B B, JACKSON R B, 1997. Plant competition underground[J]. Annu Rev Ecol Syst, 28(4): 545-570.
CHEN B M, GAO Y, LIAO H X, et al, 2017. Differential responses of invasive and native plants to warming with simulated changes in diurnal temperature ranges[J]. AoB Plants, 9(4): plx028.
CHENG J K, CAO M Y, YANG H R, et al, 2022. Interactive effects of allelopathy and arbuscular mycorrhizal fungi on the competition between the invasive species Bidens alba and its native congener Bidens biternata[J]. Weed Res, 62(4): 268-276.
CORBIN J D, D’ANTONIO C M, 2004. Competition between native perennial and exotic annual grasses: Implications for an historical invasion[J]. Ecology, 85(5): 1273-1283.
FAGÚNDEZ J, LEMA M, 2019. A competition experiment of an invasive alien grass and two native species: Are functionally similar species better competitors?[J]. Biol Invasions, 21(12): 3619-3631.
GONG X, CHEN Y, WANG T, et al, 2020. Double-edged effects of climate change on plant invasions: Ecological niche modeling global distributions of two invasive alien plants[J]. Sci Total Environ, 740: 139933.
GROTKOPP E, REJMÁNEK M, 2007. High seedling relative growth rate and specific leaf area are traits of invasive species: Phylogenetically independent contrasts of woody angiosperms[J]. Am J Bot, 94(4): 526-532.
HE W M, LI J J, PENG P H, 2012. A congeneric comparison shows that experimental warming enhances the growth of invasive Eupatorium adenophorum[J]. PLoS One, 7(4): e35681.
HELLMANN J J, BYERS J E, BIERWAGEN B G, et al, 2008. Five potential consequences of climate change for invasive species[J]. Conserv Biol, 22(3): 534-543.
LEE M R, BERNHARDT E S, van BODEGOM P M, et al, 2017. Invasive species’ leaf traits and dissimilarity from natives shape their impact on nitrogen cycling: A meta-analysis[J]. New Phytol, 213(1): 128-139.
LEVINE J M, VILÀ M, D’ANTONIO C M, et al, 2003. Mechanisms underlying the impacts of exotic plant invasions[J]. Proc Biol Sci, 270(1517): 775-781.
LI J J, PENG P H, HE W M, 2012. Physical connection decreases benefits of clonal integration in Alternanthera philoxeroides under three warming scenarios[J]. Plant Biol, 14(2): 265-270.
LIN D L, XIA J Y, WAN S Q, 2010. Climate warming and biomass accumulation of terrestrial plants: A meta-analysis[J]. New Phytol, 188(1): 187-198.
LIU Y, ODUOR A M O, ZHANG Z, et al, 2017. Do invasive alien plants benefit more from global environmental change than native plants?[J]. Glob Change Biol, 23(8): 3363-3370.
LORENZO P, HUSSAIN M I, GONZÁLEZ L, 2013. Role of allelopathy during invasion process by alien invasive plants in terrestrial ecosystems[M]// Allelopathy. Berlin, Heidelberg: Springer: 3-21.
METLEN K L, ASCHEHOUG E T, CALLAWAY R M, 2013. Competitive outcomes between two exotic invaders are modified by direct and indirect effects of a native conifer[J]. Oikos, 122(4): 632-640.
REN M X, ZHANG Q G, 2009. The relative generality of plant invasion mechanisms and predicting future invasive plants. Weed Res, 49(5): 449-460.
ROJAS-BOTERO S, KOLLMANN J, TEIXEIRA L H, 2022. Competitive trait hierarchies of native communities and invasive propagule pressure consistently predict invasion success during grassland establishment[J]. Biol Invasions, 24(1): 107-122.
SAKAI A K, ALLENDORF F W, HOLT J S, et al, 2001. The population biology of invasive species[J]. Annu Rev Ecol Syst, 32(1): 305-332.
SANDEL B, DANGREMOND E M, 2012. Climate change and the invasion of California by grasses[J]. Glob Change Biol, 18(1): 277-289.
SCHWINNING S, WEINER J, 1998. Mechanisms determining the degree of size asymmetry in competition among plants[J]. Oecologia, 113(4): 447-455.
SONG L, CHOW W S, SUN L, et al, 2010. Acclimation of photosystem II to high temperature in two Wedelia species from different geographical origins: Implications for biological invasions upon global warming[J]. J Exp Bot, 61(14): 4087-4096.
SU J Q, HAN X, CHEN B M, 2021. Do day and night warming exert different effects on growth and competitive interaction between invasive and native plants?[J]. Biol Invasions, 23(1): 157-166.
TURNBULL M H, MURTHY R, GRIFFIN K L, 2002. The relative impacts of daytime and night-time warming on photosynthetic capacity in Populus deltoides[J]. Plant Cell Environ, 25(12): 1729-1737.
VERLINDEN M, de BOECK H J, NIJS I, 2014. Climate warming alters competition between two highly invasive alien plant species and dominant native competitors[J]. Weed Res, 54(3): 234-244.
VERLINDEN M, NIJS I, 2010. Alien plant species favoured over congeneric natives under experimental climate warming in temperate Belgian climate[J]. Biol Invasions, 12(8): 2777-2787.
VOSE R S, EASTERLING D R, GLEASON B, 2005. Maximum and minimum temperature trends for the globe: An update through 2004[J]. Geophys Res Lett, 32(23): L23822.
WALTHER G R, ROQUES A, HULME P E, et al, 2009. Alien species in a warmer world: Risks and opportunities[J]. Trends Ecol Evol, 24(12): 686-693.
WAN S, LUO Y, WALLACE L L, 2002. Changes in microclimate induced by experimental warming and clipping in tallgrass prairie[J]. Glob Change Biol, 8(8): 754-768.
WAN S, HUI D, WALLACE L, et al, 2005. Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie[J]. Glob Biogeochem Cycles, 19(2): GB2014.
WANG R L, ZENG R S, PENG S L, et al, 2011. Elevated temperature may accelerate invasive expansion of the liana plant Ipomoea cairica[J]. Weed Res, 51(6): 574-580.
WELSHOFER K B, ZARNETSKE P L, LANY N K, et al, 2018. Short-term responses to warming vary between native vs. exotic species and with latitude in an early successional plant community[J]. Oecologia, 187(1): 333-342.
WEINER J, 1990. Asymmetric competition in plant populations[J]. Trends Ecol Evol, 5(11): 360-364.
XIA J, CHEN J, PIAO S, et al, 2014. Terrestrial carbon cycle affected by non-uniform climate warming[J]. Nat Geosci, 7: 173-180.
ZHANG Q, ZHANG Y, PENG S, et al, 2014. Climate warming may facilitate invasion of the exotic shrub Lantana camara[J]. PLoS One, 9(9): e105500.
ZHOU L, DICKINSON R E, DIRMEYER P, et al, 2009. Spatiotemporal patterns of changes in maximum and minimum temperatures in multi-model simulations[J]. Geophys Res Lett, 36(2): L02702.
0
浏览量
39
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构