1.中山大学地球科学与工程学院,广东 珠海 519082
2.南方海洋科学与工程广东省实验室(珠海) / 广东省地质过程与矿产资源探查重点实验室, 广东 珠海 519082
黄宛莹(1999年生),女;研究方向:岩石微观层析成像技术与数值模拟;E-mail:huangwy55@mail2.sysu.edu.cn
刘洁(1967年生),女;研究方向:数字岩石物理和计算地球动力学;E-mail:liujie86@ mail.sysu.edu.cn
纸质出版日期:2024-09-25,
网络出版日期:2024-07-12,
收稿日期:2024-05-08,
录用日期:2024-06-04
移动端阅览
黄宛莹,刘洁.微观尺度多孔岩石压实带形成与围压关系的数值模拟实验[J].中山大学学报(自然科学版)(中英文),2024,63(05):28-37.
HUANG Wanying,LIU Jie.Finite element modeling of microscale compaction localization of porous limestone under different confining stresses[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(05):28-37.
黄宛莹,刘洁.微观尺度多孔岩石压实带形成与围压关系的数值模拟实验[J].中山大学学报(自然科学版)(中英文),2024,63(05):28-37. DOI: 10.13471/j.cnki.acta.snus.ZR20240150.
HUANG Wanying,LIU Jie.Finite element modeling of microscale compaction localization of porous limestone under different confining stresses[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(05):28-37. DOI: 10.13471/j.cnki.acta.snus.ZR20240150.
不同于典型的拉张和剪切破坏,多孔岩石的非弹性压实行为是岩石变形的另一种重要表现。在压应力的作用下,高孔隙率沉积岩形成局部孔隙度和渗透率显著降低的压实带,这不仅与多孔岩石脆-韧性转变过程的中间状态有关,还会对储层流体输运性能产生重要影响。为了探究围压及岩石初始孔隙结构对局部压实的影响,本文基于莱塔灰岩样品三轴压缩实验的原位动态同步加速器X射线CT图像,建立了具有岩石真实孔隙结构的有限元模型并进行了不同围压下的弹塑性数值模拟实验。结果表明,在20~60 MPa围压下样品均发生非均匀变形;随着围压的增加,样品内部的轴向局部压缩将被抑制,同时径向局部压缩开始增强,并使得压实带内大部分的节点脱离准单轴压缩状态,不利于压实带的发展。
Different from the tensile and shear failures,the inelastic compaction of porous rocks is another important performance of rock deformation. Under compressive stress,high-porosity sedimentary rocks form compaction bands with significantly reduced porosity and permeability. This is not only related to the intermediate regime of the brittle-ductile transition of porous rocks but also has important impacts on the engineering application of fluid flow in reservoirs. To explore the influence of confining pressure and the initial pore structure on compaction localization,we establish a finite element model with the complex pore structure of the rock based on the
in situ
synchrotron CT images of the triaxial experiment of a Leitha limest
one sample and conduct elastoplastic numerical simulations under different confining pressures. Our results show that the samples undergo heterogeneous deformation under the confining pressure of 20 to 60 MPa. As the confining pressure increases,the axial local compression inside the sample is restrained,while the radial local compression is promoted. Most of the nodes in the compaction band have the trend of being away from the quasi-uniaxial compression state under high compression stress,which restricts the development of compaction bands.
岩石CT有限元数值模拟多孔岩石压实带围压
CT images of rocksfinite element simulationporous rockscompaction bandsconfining pressure
席道瑛,杜赟,李廷,等,2008. 高孔岩石中局部变形带的理论和形成条件研究进展[J]. 岩石力学与工程学报,27(S2): 3888-3898.
ABDALLAH Y,SULEM J,BORNERT M,et al,2021. Compaction banding in high-porosity carbonate rocks: 1. Experimental observations[J]. J Geophys Res Solid Earth,126(1): e2020JB020538.
AYDIN A,BORJA R I,EICHHUBL P,2006. Geological and mathematical framework for failure modes in granular rock[J]. J Struct Geol,28(1): 83-98.
BAUD P,EXNER U,LOMMATZSCH M,et al,2017a. Mechanical behavior,failure mode,and transport properties in a porous carbonate: Mechanical behavior of porous limestone[J]. J Geophys Res Solid Earth,122(9): 7363-7387.
BAUD P,MEREDITH P,TOWNEND E,2012. Permeability evolution during triaxial compaction of an anisotropic porous sandstone[J]. J Geophys Res Solid Earth,117(B5): B05203.
BAUD P,SCHUBNEL A,HEAP M,et al,2017b. Inelastic compaction in high-porosity limestone monitored using acoustic emissions: Compaction in limestone monitored by AE[J]. J Geophys Res Solid Earth,122(12): 9989-10008.
CHEN X,ROSHAN H,LV A,et al,2020. The dynamic evolution of compaction bands in highly porous carbonates: the role of local heterogeneity for nucleation and propagation[J]. Prog Earth Planet Sci,7(1): 28.
CILONA A,FAULKNER D R,TONDI E,et al,2014. The effects of rock heterogeneity on compaction localization in porous carbonates[J]. J Struct Geol,67: 75-93.
FORTIN J,STANCHITS S,DRESEN G,et al,2006. Acoustic emission and velocities associated with the formation of compaction bands in sandstone[J]. J Geophys Res Solid Earth,111(B10): B10203.
FOSSEN H,SCHULTZ R A,SHIPTON Z K,et al,2007. Deformation bands in sandstone: A review[J]. J Geol Soc,164(4): 755-769.
HOLCOMB D J,OLSSON W A,2003. Compaction localization and fluid flow[J]. J Geophys Res Solid Earth,108(B6):2290.
HOLCOMB D,RUDNICKI J W,ISSEN K A,et al,2007. Compaction localization in the Earth and the laboratory: state of the research and research directions[J]. Acta Geotech,2(1): 1-15.
HUANG L,BAUD P,CORDONNIER B,et al,2019. Synchrotron X-ray imaging in 4D: Multiscale failure and compaction localization in triaxially compressed porous limestone[J]. Earth Planet Sci Lett,528: 115831.
HUANG W,MENG F,LIU J,et al,2024. Development of compaction localization in leitha limestone: Finite element modeling based on synchrotron X-ray imaging[J]. J Geophys Res Solid Earth (Under revision)
JIN H,TANNER R I,1993. Generation of unstructured tetrahedral meshes by advancing front technique[J]. Int J Numer Meth Eng,36(11): 1805-1823.
LIU Y,SUN W,YUAN Z,et al,2016. A nonlocal multiscale discrete-continuum model for predicting mechanical behavior of granular materials[J]. Int J Numer Meth Eng,106(2): 129-160.
LÖHNER R,PARIKH P,1988. Generation of three-dimensional unstructured grids by the advancing-front method[J]. Int J Numer Meth Fluids,8(10): 1135-1149.
MARKETOS G,BOLTON M D,2009. Compaction bands simulated in discrete element models[J]. J Struct Geol,31(5): 479-490.
MIRONE A,BRUN E,GOUILLART E,et al,2014. The PyHST2 hybrid distributed code for high speed tomographic reconstruction with iterative reconstruction and a priori knowledge capabilities[J]. Nucl Instrum Meth Phys Res B,324: 41-48.
OLSSON W A,HOLCOMB D J,RUDNICKI J W,2002. Compaction localization in porous sandstone: Implications for reservoir mechanics[J]. Oil Gas Sci Technol,57(5): 591-599.
PATERSON M S,WONG T F,2005. Experimental rock deformation—The brittle field[M]. Berlin/Heidelberg: Springer-Verlag.
RENARD,2019. Synchrotron X-ray imaging in 4D: Multiscale failure and compaction localization in triaxially compressed porous limestone[DB]. Norstore.
RUTQVIST J,2012. The Geomechanics of CO2 storage in deep sedimentary formations[J]. Geotech Geol Eng,30(3): 525-551.
SAMMIS C G,ASHBY M F,1986. The failure of brittle porous solids under compressive stress states[J]. Acta Metall,34(3): 511-526.
SHAHIN G,VIGGIANI G,BUSCARNERA G,2020. Simulating spatial heterogeneity through a CT-FE mapping scheme discloses boundary effects on emerging compaction bands[J]. Int J Solids Struct,206: 247-261.
STERNLOF K R,KARIMI-FARD M,POLLARD D D,et al,2006. Flow and transport effects of compaction bands in sandstone at scales relevant to aquifer and reservoir management[J]. Water Resour Res,42(7) : W07425.
VAJDOVA V,BAUD P,WU L,et al,2012. Micromechanics of inelastic compaction in two allochemical limestones[J]. J Struct Geol,43: 100-117.
VERMEER P A,De BORST R,1984. Non-associated plasticity for soils,concrete and rock[J]. Heron,29(3): 51-64.
WANG B,CHEN Y,WONG T F,2008. A discrete element model for the development of compaction localization in granular rock[J]. J Geophys Res Solid Earth,113(B3): B03202.
WONG T F,BAUD P,2012. The brittle-ductile transition in porous rock: A review[J]. J Struct Geol,44: 25-53.
WONG T f,DAVID C,ZHU W,1997. The transition from brittle faulting to cataclastic flow in porous sandstones: Mechanical deformation[J]. J Geophys Res Solid Earth,102(B2): 3009-3025.
WU H,GUO N,ZHAO J,2018. Multiscale modeling and analysis of compaction bands in high-porosity sandstones[J]. Acta Geotech,13(3): 575-599.
ZHAO J,GUO N,2015. The interplay between anisotropy and strain localisation in granular soils: A multiscale insight[J]. Geotechnique,65(8): 642-656.
0
浏览量
25
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构