1.中山大学化学学院,广东 广州 510006
2.海南大学化学化工学院,海南 海口 570228
宋海利(1989年生),女;研究方向:功能纳米材料;E-mail:songhli@mail.sysu.edu.cn
李满荣(1975年生),男;研究方向:功能纳米材料;E-mail:limanrong@mail.sysu.edu.cn
纸质出版日期:2024-09-25,
网络出版日期:2024-07-22,
收稿日期:2024-05-17,
录用日期:2024-06-07
移动端阅览
宋海利,赵爽,李满荣.常压合成LiNbO3-MnTiO3 固溶相单晶及其磁性能[J].中山大学学报(自然科学版)(中英文),2024,63(05):125-130.
SONG Haili,ZHAO Shuang,LI Manrong.Atmospheric pressure synthesis of LiNbO3-MnTiO3 solid-solution single crystal and their magnetoelectric properties[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(05):125-130.
宋海利,赵爽,李满荣.常压合成LiNbO3-MnTiO3 固溶相单晶及其磁性能[J].中山大学学报(自然科学版)(中英文),2024,63(05):125-130. DOI: 10.13471/j.cnki.acta.snus.ZR20240146.
SONG Haili,ZHAO Shuang,LI Manrong.Atmospheric pressure synthesis of LiNbO3-MnTiO3 solid-solution single crystal and their magnetoelectric properties[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(05):125-130. DOI: 10.13471/j.cnki.acta.snus.ZR20240146.
利用常压固相法合成掺杂10%和20% MnTiO
3
的
<math id="M1"><mi mathvariant="normal">L</mi><mi mathvariant="normal">i</mi><mi mathvariant="normal">N</mi><mi mathvariant="normal">b</mi><msub><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">3</mn></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=68796284&type=
3.21733332
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=68796278&type=
9.48266602
<math id="M2"><mo>-</mo><mi mathvariant="normal">M</mi><mi mathvariant="normal">n</mi><mi mathvariant="normal">T</mi><mi mathvariant="normal">i</mi><msub><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">3</mn></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=68796280&type=
3.21733332
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=68796282&type=
11.68400002
固溶相单晶,通过X射线衍射仪和球差校正透射电镜分析样品的结构特征,探究固溶相单晶的磁电性能和光学带隙变化。研究发现:MnTiO
3
相均匀掺杂在母相LiNbO
3
中并维持
<math id="M3"><mi mathvariant="normal">L</mi><mi mathvariant="normal">i</mi><mi mathvariant="normal">N</mi><mi mathvariant="normal">b</mi><msub><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">3</mn></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=68796298&type=
3.21733332
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=68796287&type=
9.48266602
<math id="M4"><mo>-</mo><mi>R</mi><mn mathvariant="normal">3</mn><mi>c</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=68796289&type=
2.28600001
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=68796291&type=
6.60400009
结构。由于MnTiO
3
的掺杂,低温状态下样品表现弱磁性,且磁性来源于高自旋态的
<math id="M5"><mi mathvariant="normal">M</mi><msup><mrow><mi mathvariant="normal">n</mi></mrow><mrow><mn mathvariant="normal">2</mn><mo>+</mo></mrow></msup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=68796292&type=
2.53999996
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=68796294&type=
6.51933336
。同时,基于母相LiNbO
3
的铁电效应,固溶相表现出明显的极性。此外,随着MnTiO
3
掺杂量的增大,固溶相样品的光学带隙逐渐减小。
<math id="M6"><mi mathvariant="normal">L</mi><mi mathvariant="normal">i</mi><mi mathvariant="normal">N</mi><mi mathvariant="normal">b</mi><msub><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">3</mn></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=68796296&type=
3.21733332
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=68796297&type=
9.48266602
<math id="M7"><mo>-</mo><mi mathvariant="normal">M</mi><mi mathvariant="normal">n</mi><mi mathvariant="normal">T</mi><mi mathvariant="normal">i</mi><msub><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">3</mn></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=68796313&type=
3.21733332
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=68796303&type=
11.68400002
solid-solution single crystal doped with 10% and 20% MnTiO
3
were synthesized by solid-state method at atmospheric pressure, and the structural characteristics of the samples were analyzed by X-ray diffractometer and spherical aberration corrected transmission electron microscope. The magnetoelectric properties and optical bandgap changes of the solid-solution single crystals were also studied. It was found that the MnTiO
3
phase was homogeneously doped in the parent
<math id="M8"><mi mathvariant="normal">L</mi><mi mathvariant="normal">i</mi><mi mathvariant="normal">N</mi><mi mathvariant="normal">b</mi><msub><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">3</mn></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=68796304&type=
3.80999994
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=68796316&type=
11.00666618
phase and maintained the
<math id="M9"><mi mathvariant="normal">L</mi><mi mathvariant="normal">i</mi><mi mathvariant="normal">N</mi><mi mathvariant="normal">b</mi><msub><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">3</mn></mrow></msub><mo>-</mo><mi>R</mi><mn mathvariant="normal">3</mn><mi>c</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=68796317&type=
3.80999994
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=68796319&type=
21.08200073
structure. Due to the doping of MnTiO
3
, the sample exhibits weak magnetism at low temperature, which is derived from the high-spin state of
<math id="M10"><mi mathvariant="normal">M</mi><msup><mrow><mi mathvariant="normal">n</mi></mrow><mrow><mn mathvariant="normal">2</mn><mo>+</mo></mrow></msup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=68796308&type=
2.87866688
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=68796309&type=
7.45066643
. Originated from the ferroelectric effect of the parent LiNbO
3
, the solid-solution exhibits obvious polarity. In addition, with the increase of MnTiO
3
, the optical band gap of the sample gradually decreases.
常压固相法MnTiO3LiNbO3磁性
atmospheric solid-state methodMnTiO3LiNbO3magnetism
张岩, 2019. 掺镁铌酸锂单晶的畴壁存储及电畴翻转研究[D]. 上海: 复旦大学.
赵爽, 2022. 锰基异常钙钛矿氧化物极磁体的物理和化学压力制备及磁电性能研究[D].广州: 中山大学.
CHAUDHARY S, SRIVASTAVA P, KAUSHIK S D, et al, 2019. Nature of magnetoelectric coupling in corundum antiferromagnet Co4Ta2O9 [J]. J Magn Magn Mater, 475: 508-513.
CHU C W, HOR P H, MENG R L, et al, 1987. Evidence for superconductivity above 40 K in the La-Ba-Cu-O compound system[J]. Phys Rev Lett, 58(4): 405.
DIENY B , CHSHIEV M, 2017. Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications[J]. Rev Mod Phys, 89(2): 025008.
IMADA M, FUJIMORI A, TOKURA Y, 1998. Metal-insulator transitions[J]. Rev Mod Phys, 70:1039.
JU C, YANG J C, LUO C, et al, 2016. Anomalous electronic anisotropy triggered by ferroelastic coupling in multiferroic heterostructures[J]. Adv Mater, 28: 876-883.
LIU H J, WEI T C, ZHU Y M, et al, 2016. Strain-mediated inverse photoresistivity in SrRuO3/La0.7Sr0.3MnO3 superlattices[J]. Adv Func Mater, 26: 729-737.
LIU Q, CHEN Z, CHEN X, et al, 2022. Defect modulation and luminescence improvement of Mn4+-activated La(Mg, Nb)O3 phosphor with improved stability for plant cultivation[J]. J Mater Chem C, 10: 3472-3479.
SHANNON R D, 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallogr A, 32: 751-767.
TRA V T, YANG J C, HHSIEH Y, et al, 2014. Controllable electrical conduction at complex oxide interfaces[J]. Phys Status Solidi RRL, 8: 478-500.
VARELA M, LUPINI A R, BENTHEM K V, et al, 2005. Materials characterization in the aberration-corrected scanning transmission electron microscope[J]. Annu Rev Mater Res, 35: 539-569.
VERSEILS M, MEZZADRI F, DELMONTE D, et al, 2019. Centrosymmetry breaking and ferroelectricity driven by short-range magnetic order in the quadruple perovskite (YMn3)Mn4O12[J]. Inorg Chem , 58(20): 14204-14211.
WANG B S, TONG P, SUN Y P, et al, 2010. Structural, magnetic properties and magnetocaloric effect in Ni-doped antiperovskite compounds GaCMn3-xNix (0≤x≤ 0.10)[J]. Phys B, 405: 2427-2430.
WEIS R S, GAYLORD T K, 1985. Lithium-Niobate summary of physical-properties and crystal structure[J]. Appl Phys A, 37(4): 191-203.
ZAVALICHE F, ZHENG H, MOHADDES-ARDABILI L, et al, 2005. Electric field-induced magnetization switching in epitaxial columnar nanostructures[J]. Nano Lett, 5: 1793-1796.
ZHOU H D, WIEBE C R, JO Y J, et al, 2009. Chemical pressure induced spin freezing phase transition in Kagome Pr langasites[J]. Phys Rev Lett, 102: 067203.
0
浏览量
42
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构