中山大学数学学院,广东 广州 510275
杨力华(1962年生),男;研究方向:函数逼近论、小波分析与信号处理;E-mail: mcsylh@mail.sysu.edu.cn
纸质出版日期:2024-11-25,
网络出版日期:2024-10-25,
收稿日期:2024-04-25,
录用日期:2024-06-03
移动端阅览
杨力华.小波分析概述: 从信号处理的视角[J].中山大学学报(自然科学版)(中英文),2024,63(06):202-223.
YANG Lihua.An overview of wavelet analysis: From the perspective of signal processing[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(06):202-223.
杨力华.小波分析概述: 从信号处理的视角[J].中山大学学报(自然科学版)(中英文),2024,63(06):202-223. DOI: 10.13471/j.cnki.acta.snus.ZR20240134.
YANG Lihua.An overview of wavelet analysis: From the perspective of signal processing[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(06):202-223. DOI: 10.13471/j.cnki.acta.snus.ZR20240134.
本文从信号处理的视角对20世纪80年代末兴起的小波分析做一个通俗的概述. 内容包括小波分析产生的基本问题背景和关键历史事件, 小波分析的基本理论, 及其对信号处理的意义和作用. 希望透过本文能科普性地展示小波的基本理论以及为什么要建立这样的理论. 除此以外, 笔者还对小波分析之后时频分析领域所出现的经验模型分解方法和图信号处理的基本问题给出简要的介绍. 作为中山大学百年校庆的约稿综述, 本文对中山大学小波分析研究团队的基本阵容以及历年来所开展的重要学术事件进行了简单的回顾.
This paper provides a popular overview of wavelet analysis, which emerged in the late 1980s, from the perspective of signal processing. The content includes the basic problems and key historical events on wavelet analysis, and their significance and role in signal processing. The author hopes this article can provide a scientific demonstration of what wavelet theory is and why it is important. In addition, the author also provides a brief introduction to the empirical model decomposition and graph signal processing that emerged in the field of time-frequency analysis after wavelet analysis. As a invited review for the centennial anniversary of Sun Yat-sen University, this article provides a brief review of the basic lineup of the wavelet analysis research team at Sun Yat-sen University and the important academic events carried out over the past years.
小波分析函数逼近信号处理模式识别
wavelet analysisfunction approximationsignal processingpattern recognition
邓东皋, 彭立中, 1991. 小波分析[J]. 数学进展, 20(3): 294-310.
龙瑞麟, 1995. 高维小波分析[M]. 北京: 世界图书出版公司.
ALEXANDRESCU M, GIBERT D, HULOT G, et al, 1995. Detection of geomagnetic jerks using wavelet analysis[J]. J Geophys Res Solid Earth, 100(B7): 12557-12572.
BABOLIAN E, FATTAHZADEH F, 2007. Numerical computation method in solving integral equations by using Chebyshev wavelet operational matrix of integration[J]. Appl Math Comput, 188(1): 1016-1022.
BATTLE G, 1987. A block spin construction of ondelettes. Part I: Lemarié functions[J]. Commun Math Phys, 110(4): 601-615.
BEYLKIN G, COIFMAN R, ROKHLIN V, 1991. Fast wavelet transforms and numerical algorithms I[J]. Commun Pure Appl Math, 44(2): 141-183.
CHEN Q H, HUANG N, RIEMENSCHNEIDER S, et al, 2006. A B-spline approach for empirical mode decompositions[J]. Adv Comput Math, 24(1): 171-195.
CHENG C, CHEN Y, LEE Y J, et al, 2023. SVD-based graph Fourier transforms on directed product graphs[J]. IEEE Trans Signal Inf Process Netw, 9: 531-541.
CHUI C K, 1992. An introduction to wavelets, volume 1[M]. New York: Academic Press.
COHEN A, RYAN R D, 1995. Wavelets and multiscale signal processing[M]. London: Chapman and Hall.
COIFMAN R R, MAGGIONI M, 2006. Diffusion wavelets[J]. Appl Comput Harmon Anal, 21(1): 53-94.
CROVELLA M, KOLACZYK E, 2003. Graph wavelets for spatial traffic analysis[C]//IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies, 3: 1848-1857.
DAUBECHIES I, 1988. Orthonormal bases of compactly supported wavelets[J]. Commun Pure Appl Math, 41(7): 909-996.
DAUBECHIES I, 1992. Ten lectures on wavelets[M]. Philadelphia: SIAM.
DAUBECHIES I, 1993. Wavelet transforms and orthonormal wavelet bases[M]. Providence, RI: American Maathematical Society.
DAUBECHIES I, 1996. Where do wavelets come from?A personal point of view[J]. Proc IEEE, 84(4): 510-513.
DERI J A, MOURA J M F, 2017. Spectral projector-based graph Fourier transforms[J]. IEEE J Sel Top Signal Process, 11(6): 785-795.
DOMINGOS J, MOURA J M F, 2020. Graph Fourier transform: A stable approximation[J]. IEEE Trans Signal Process, 68: 4422-4437.
DONG B, 2017. Sparse representation on graphs by tight wavelet frames and applications[J]. Appl Comput Harmon Anal, 42(3): 452-479.
EBRAHIMI T, HORNE C, 2000. MPEG-4 natural video coding-An overview[J]. Signal Process Image Communi, 15(4/5): 365-385.
EKAMBARAM V N, FANTI G C, AYAZIFAR B, et al, 2015. Spline-like wavelet filterbanks for multiresolution analysis of graph-structured data[J]. IEEE Trans Signal Inf Process Netw, 1(4): 268-278.
GANTUMUR T, STEVENSON R P, 2006. Computation of singular integral operators in wavelet coordinates[J]. Computing, 76(1): 77-107.
GAVISH M, NADLER B, COIFMAN R R, 2010. Multiscale wavelets on trees, graphs and high dimensional data: Theory and applications to semi supervised learning[J]. ICML 2010: 367-374.
HAMMOND D K, VANDERGHEYNST P, GRIBONVAL R, 2011. Wavelets on graphs via spectral graph theory[J]. Appl Comput Harmon Anal, 30(2): 129-150.
HUANG C, YANG L H, WANG Y, 2009a. Convergence of a convolution-filtering-based algorithm for empirical mode decomposition[J]. Adv Adapt Data Anal, 1(4): 561-571.
HUANG C, YANG L J, YANG L H, 2015. <math id="M500"><mi>ε</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=68481105&type=2.28600001https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=68481106&type=1.69333339-mono-component: Its characterization and construction[J]. IEEE Trans Signal Process, 63(1): 234-243.
HUANG J F, WANG Y, YANG L H, 2013. Vakman’s problem and the extension of Hilbert transform[J]. Appl Comput Harmon Anal, 34(2): 308-316.
HUANG J F, YANG L H, 2011. Vakman’s anaysis in <math id="M501"><msup><mrow><mi>L</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msup><mfenced separators="|"><mrow><mi mathvariant="double-struck">R</mi></mrow></mfenced></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=68481090&type=3.21733332https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=68481091&type=7.78933382[J]. Int J Comput Math, 88(3): 545-554.
HUANG N E, SHEN Z, LONG S R, et al, 1998a. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proc R Soc Lond A, 454(1971): 903-995.
HUANG N E, SHEN Z, LONG S R, 1999. A new view of nonlinear water waves: The Hilbert spectrum[J]. Annu Rev Fluid Mech, 31: 417-457.
HUANG W, SHEN Z, HUANG N E, et al, 1998b. Engineering analysis of biological variables: An example of blood pressure over 1 day[J]. Proc Natl Acad Sci, 95(9): 4816-4821.
HUANG N E, WU Z H , LONG S R, 2009b. On instantaneous frequency[J]. Adv Adapt Data Anal, 1(2): 177-229.
JABŁOŃSKI I, 2017. Graph signal processing in applications to sensor networks, smart grids, and smart cities[J]. IEEE Sens J, 17(23): 7659-7666.
KESSLER B M, PAYNE G L, POLYZOU W N, 2004. Application of wavelets to singular integral scattering equations[J]. Phys Rev C, 70(3): 034003.
KOTZAGIANNIDIS M S, DRAGOTTI P L, 2019. Splines and wavelets on circulant graphs[J]. Appl Comput Harmon Anal, 47(2): 481-515.
LAGE C, SCHWAB C, 1999. Wavelet galerkin algorithms for boundary integral equations[J]. SIAM J Sci Comput, 20(6): 2195-2222.
LEMARIÉ P G, 1988. Ondelettes à localisation exponentielle[J]. J Math Pures Appl, 67 :227-236.
LIN W H, HUANG J F , SUEN C Y, et al, 2020. A feature extraction model based on discriminative graph signals[J]. Expert Syst Appl, 139: 112861.
LIU B, RIEMENSCHNEIDER S,XU Y, 2006. Gearbox fault diagnosis using empirical mode decomposition and Hilbert spectrum[J]. Mech Syst Signal Process, 20(3): 718-734.
LORENTZ G G, 1965. Approximation of functions[J]. Nature, 205(178): 1041-1042.
MALLAT S, 2008. A wavelet tour of signal processing: The sparse way[M]. 3rd ed. New York: Academic Press.
MALLAT S, HWANG W L, 1992. Singularity detection and processing with wavelets[J]. IEEE Trans Inf Theory, 38(2): 617-643.
MALLAT S G, 1989a. Multiresolution approximations and wavelet orthonormal bases of L<math id="M502"><msup><mrow/><mrow><mn mathvariant="normal">2</mn></mrow></msup></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=68481092&type=2.87866688https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=68481093&type=1.10066664(R)[J]. Trans Amer Math Soc, 315(1): 69-87.
MALLAT S G, 1989b. A theory for multiresolution signal decomposition: The wavelet representation[J]. IEEE Trans Pattern Anal Mach Intell, 11(7): 674-693.
MEYER Y, 1986a. Ondelettes et fonctions splines[J]. Séminaire Équations aux dérivées partielles (Polytechnique): 1-18. https://eudml.org/doc/111928https://eudml.org/doc/111928.
MEYER Y, 1986b. Principe d’incertitude, bases hilbertiennes et algebres d’operateurs[J]. Séminaire Bourbaki, 662:209-223.
MEYER Y, 1989. Orthonormal wavelets[M]//Combes J M, et al. Wavelets: Time-frequency methods and phase space. Berlin: Springer-Verlag.
MEYER Y, 1993. Wavelets: Algorithms & applications[M]. Philadelphia: SIAM.
NAKAHIRA K, MIYAMOTO A, 2018. Parseval wavelets on hierarchical graphs[J]. Appl Comput Harmon Anal, 44(2): 414-445.
NARANG S K, ORTEGA A, 2012. Perfect reconstruction two-channel wavelet filter banks for graph structured data[J]. IEEE Trans Signal Process, 60(6): 2786-2799.
NARANG S K, ORTEGA A, 2013. Compact support biorthogonal wavelet filterbanks for arbitrary undirected graphs[J]. IEEE Trans Signal Process, 61(19): 4673-4685.
ORTEGA A, FROSSARD P, KOVAČEVIĆ J, et al, 2018. Graph signal processing: Overview, challenges, and applications[J]. Proc IEEE, 106(5): 808-828.
PAVEZ E, GIRAULT B, ORTEGA A, et al, 2023. Two channel filter banks on arbitrary graphs with positive semi definite variation operators[J]. IEEE Trans Signal Process, 71: 917-932.
QIAN T, 2014. Cyclic AFD algorithm for the best rational approximation[J]. Math Meth Appl Sci, 37(6): 846-859.
QIAN T, HO I T, LEONG I T, et al, 2010a. Adaptive decomposition of functions into pieces of non-negative instantaneous frequencies[J]. Int J Wavelets, Multiresolut Inf Process, 8(5): 813-833.
QIAN T, TAN L H, WANG Y B, 2011a. Adaptive decomposition by weighted inner functions: A generalization of Fourier series[J]. J Fourier Anal Appl, 17(2): 175-190.
QIAN T, WANG R, XU Y, et al, 2010b. Orthonormal bases with nonlinear phases[J]. Adv Comput Math, 33(1): 75-95.
QIAN T, WANG Y B, 2011b. Adaptive Fourier series—a variation of greedy algorithm[J]. Adv Comput Math, 34(3): 279-293.
QIAN T, XU Y, YAN D, et al, 2009. Fourier spectrum characterization of Hardy spaces and applications[J]. Proc Amer Math Soc, 137(3): 971-980.
RILLING G, FLANDRIN P, GONCALVÈS P, 2003. On empirical mode decomposition and its algorithms[C]// Proceedings of IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, 3: 8-11.
RUIZ L, CHAMON L F O, RIBEIRO A, 2020. The graphon Fourier transform[C]//2020 IEEE International Conference on Acoustics, Speech and Signal Processing: 5660-5664.
SANDRYHAILA A, MOURA J M F, 2013. Discrete signal processing on graphs: Graph Fourier transform[C]//2013 IEEE International Conference on Acoustics, Speech and Signal Processing: 6167-6170.
SARDELLITTI S, BARBAROSSA S, Di LORENZO P, 2017. On the graph Fourier transform for directed graphs[J]. IEEE J Sel Top Signal Process, 11(6): 796-811.
SHUMAN D I, FARAJI M J, VANDERGHEYNST P, 2016. A multiscale pyramid transform for graph signals[J]. IEEE Trans Signal Process, 64(8): 2119-2134.
SHUMAN D I, NARANG S K, FROSSARD P, et al, 2013. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains[J]. IEEE Signal Process Mag, 30(3): 83-98.
SHUMAN D I, RICAUD B, VANDERGHEYNST P, 2012. A windowed graph fourier transform[C]//2012 IEEE Statistical Signal Processing Workshop: 133-136.
SHUMAN D I, WIESMEYR C, HOLIGHAUS N,et al, 2015. Spectrum-adapted tight graph wavelet and vertex-frequency frames[J]. IEEE Trans Signal Process, 63(16): 4223-4235.
SUN Q, TANG Y, 2002. Singularity analysis using continuous wavelet transform for bearing fault diagnosis[J]. Mech Syst Signal Process, 16(6): 1025-1041.
TAN L H, SHEN L X, YANG L H, 2010a. Rational orthogonal bases satisfying the Bedrosian identity[J]. Adv Comput Math, 33(3): 285-303.
TAN L H, YANG L H, HUANG D R, 2009. Necessary and sufficient conditions for the Bedrosian identity[J]. J Integral Equ Appl, 21(1): 77-94.
TAN L H, YANG L H, HUANG D R, 2010b. Construction of periodic analytic signals satisfying the circular Bedrosian identity[J]. IMA J Appl Math, 75(2): 246-256.
TAN L H, YANG L H, HUANG D R, 2010c. The structure of instantaneous frequencies of periodic analytic signals[J]. Sci China Math, 53(2): 347-355.
TANG Y Y, LIU J M,YANG L H, et al, 2000a. Wavelet theory and its application to pattern recognition[M]. Singapore: World Scientific.
TANG Y Y, YANG L H, LIU J M, 2000b. Characterization of Dirac-structure edges with wavelet transform[J]. IEEE Trans Syst, Man Cybern Part B Cybern, 30(1): 93-109.
TAY D B H, TANAKA Y, SAKIYAMA A, 2017. Almost tight spectral graph wavelets with polynomial filters[J]. IEEE J Sel Top Signal Process, 11(6): 812-824.
TU C L, HWANG W L, HO J, 2005. Analysis of singularities from modulus maxima of complex wavelets[J]. IEEE Trans Inf Theory, 51(3): 1049-1062.
VAINIKKO G, KIVINUKK A, LIPPUS J, 2005. Fast solvers of integral equations of the second kind: Wavelet methods[J]. J Complex, 21(2): 243-273.
XU Y, YAN D, 2006a. The Bedrosian identity for the Hilbert transform of product functions[J]. Proc Amer Math Soc, 134(9): 2719-2728.
XU Y, LIU B, LIU J, et al, 2006b. Two-dimensional empirical mode decomposition by finite elements[J]. Proc R Soc A, 462(2074): 3081-3096.
YANG L H, QI A, HUANG C, et al, 2021. Graph Fourier transform based on ℓ1 norm variation minimization[J]. Appl Comput Harmon Anal, 52: 348-365.
YANG L H, SUEN C Y, TANG Y Y, 2003. A width-invariant property of curves based on wavelet transform with a novel wavelet function[J]. IEEE Trans Syst Man Cybern Part B Cybern, 33(3): 541-548.
YANG L J, YANG Z H, YANG L H, 2015. The theoretical analysis for an iterative envelope algorithm[J]. Digit Signal Process, 38: 32-42.
YANG L J, YANG Z H, YANG L H, et al, 2013. An improved envelope algorithm for eliminating undershoots[J]. Digit Signal Process, 23(1): 401-411.
YANG L J, YANG Z H, ZHOU F, et al, 2014. A novel envelope model based on convex constrained optimization[J]. Digit Signal Process, 29: 138-146.
YANG Z H, QI D X, YANG L H, 2004. Signal period analysis based on Hilbert-Huang transform and its application to texture analysis[C]//Proceedings of the Third International Conference on Image and Graphics: 430-433.
YANG Z H, YANG L H, QI D X, et al, 2006. An EMD-based recognition method for Chinese fonts and styles[J]. Pattern Recognit Lett, 27(14): 1692-1701.
YANG Z J, YANG L H, QING C M, et al, 2008. A method to eliminate riding waves appearing in the empirical AM/FM demodulation[J]. Digit Signal Process, 18: 488-504.
YOU J X, YANG L H, 2023a. Perfect reconstruction two-channel filter banks on arbitrary graphs[J]. Appl Comput Harmon Anal, 65: 296-321.
YOU J X, YANG L H, 2023b. Spline-like wavelet filterbanks with perfect reconstruction on arbitrary graphs[J]. IEEE Trans Signal Inf Process Netw, 9: 207-216.
责任编辑 冯兆永)
0
浏览量
50
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构