华南理工大学数学学院, 广东 广州 510640
刘锐(1983年生),男;研究方向:非线性动力系统、计算生物学与生物信息学;E-mail:scliurui@scut.edu.cn
杨茜然(2001年生),女;研究方向:非线性动力系统、计算生物学与生物信息学;E-mail:mayangxiran@mail.scut.edu.cn
纸质出版日期:2024-11-25,
网络出版日期:2024-07-31,
收稿日期:2024-04-09,
录用日期:2024-05-02
移动端阅览
刘锐,杨茜然.复杂生物系统临界状态的识别与预警[J].中山大学学报(自然科学版)(中英文),2024,63(06):275-290.
LIU Rui,YANG Xiran.Identification and early warning of critical states in complex biological systems[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(06):275-290.
刘锐,杨茜然.复杂生物系统临界状态的识别与预警[J].中山大学学报(自然科学版)(中英文),2024,63(06):275-290. DOI: 10.13471/j.cnki.acta.snus.ZR20240109.
LIU Rui,YANG Xiran.Identification and early warning of critical states in complex biological systems[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(06):275-290. DOI: 10.13471/j.cnki.acta.snus.ZR20240109.
很多生物系统的动态发展过程中都存在状态的临界迁移现象,例如复杂疾病,在离临界状态较远时,病情不明显;而到达临界状态后,病情有可能在很短的时间内从稳定期突然恶化而成为重病期. 如何基于高维生物医学数据,找到可用于识别生物系统状态改变临界期的标记物,对包括疾病的早期预警等课题具有重要意义. 围绕生物系统临界状态识别与预警这一课题,本文主要综述了动态网络生物标志物(DNB)方法,及针对不同的数据条件所发展的一系列适用的改进方法及其应用.
Many biological systems exhibit critical transitions in their dynamic development processes. For instance, in complex diseases, the condition may not be apparent when far from the critical state; however, upon reaching the critical state, the condition may rapidly deteriorate from a stable phase to a severe phase. It is of great importance to identify biomarkers from high-dimensional biomedical data that can be used to recognize the critical periods of state changes in biological systems, including early warning of diseases. This paper reviews the methods of dynamic network biomarkers and a series of applicable modified methods developed for different data conditions and their applications in the identification and early warning of critical states in biological systems.
状态迁移临界状态动态网络生物标志物(DNB)早期预警信号
state transitioncritical statedynamic network biomarkers(DNB)early warning signal
BARGAJE R, TRACHANA K, SHELTON M N, et al, 2017. Cell population structure prior to bifurcation predicts efficiency of directed differentiation in human induced pluripotent cells[J]. Proc Natl Acad Sci USA, 114(9): 2271-2276.
BRETT T, AJELLI M, LIU Q H, et al, 2020. Detecting critical slowing down in high-dimensional epidemiological systems[J]. PLoS Comput Biol, 16(3): e1007679.
CHEN E I, YATES J R, 2006. Maspin and tumor metastasis[J]. IUBMB Life, 58(1): 25-29.
CHEN L, LIU R, LIU Z P, et al, 2012. Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers[J]. Sci Rep, 2: 342.
CHEN L, WANG R, LI C, et al, 2010. Modeling biomolecular networks in cells: structures and dynamics[M]. London:Springer-Verlag.
CHEN P, LI Y, LIU X, et al, 2017. Detecting the tipping points in a three-state model of complex diseases by temporal differential networks[J]. J Transl Med, 15(1): 217.
CHEN P, LIU R, CHEN L N, et al, 2015. Identifying critical differentiation state of MCF-7 cells for breast cancer by dynamical network biomarkers[J]. Front Genet, 6: 252.
DAHLEM M A, KURTHS J, FERRARI M D, et al, 2015. Understanding migraine using dynamic network biomarkers[J]. Cephalalgia, 35(7): 627-630.
DAKOS V, van NES E H, D'ODORICO P, et al, 2012. Robustness of variance and autocorrelation as indicators of critical slowing down[J]. Ecology, 93(2): 264-271.
DRAKE J M, GRIFFEN B D, 2010. Early warning signals of extinction in deteriorating environments[J]. Nature, 467(7314): 456-459.
GAO R, YAN J, LI P, et al, 2022. Detecting the critical states during disease development based on temporal network flow entropy[J]. Brief Bioinform, 23(5): bbac164.
GARDINER C W, 1985. Handbook of stochastic methods for physics, chemistry and the natural sciences[M]. Berlin: Springer-Verlag.
HAN C, ZHONG J, HU J, et al, 2020. Single-sample node entropy for molecular transition in pre-deterioration stage of cancer[J]. Front Bioeng Biotechnol, 8: 809.
HARUKI T, YONEZAWA S, KOIZUMI K, et al, 2022. Application of the dynamical network biomarker theory to Raman spectra[J]. Biomolecules, 12(12): 1730.
HIRATA Y, BRUCHOVSKY N, AIHARA K, 2010. Development of a mathematical model that predicts the outcome of hormone therapy for prostate cancer[J]. J Theor Biol, 264(2): 517-527.
HORSTHEMKE W, LEFEVER R, 1984. Noise-induced transitions: Theory and applications in physics, chemistry, and biology[M]. Berlin: Springer-Verlag.
HUANG X, HAN C, ZHONG J, et al, 2023. Low expression of the dynamic network markers FOS/JUN in pre-deteriorated epithelial cells is associated with the progression of colorectal adenoma to carcinoma[J]. J Transl Med, 21(1): 45.
KAMBHU J, WEIDMAN S, KRISHNAN N, 2007. New directions for understanding systemic risk: A report on a conference cosponsored by the Federal Reserve Bank of New York and the National Academy of Sciences[M]. Washington, DC: National Academies Press.
KOIZUMI K, OKU M, HAYASHI S, et al, 2020. Suppression of dynamical network biomarker signals at the predisease state (Mibyou) before metabolic syndrome in mice by a traditional Japanese medicine (kampo formula) bofutsushosan[J]. Evid Based Complement Alterna Med, 2020: 9129134.
LENTON T M, 2011. Early warning of climate tipping points[J]. Nat Clim Change, 1: 201-209.
LENTON T M, HELD H, KRIEGLER E, et al, 2008. Tipping elements in the Earth's climate system[J]. Proc Natl Acad Sci, 105(6): 1786-1793.
LESTERHUIS W J, BOSCO A, MILLWARD M J, et al, 2017. Dynamic versus static biomarkers in cancer immune checkpoint blockade: Unravelling complexity[J]. Nat Rev Drug Discov, 16(4): 264-272.
LI M, ZENG T, LIU R, et al, 2014. Detecting tissue-specific early warning signals for complex diseases based on dynamical network biomarkers: Study of type 2 diabetes by cross-tissue analysis[J]. Brief Bioinform, 15(2): 229-243.
LI M, LI C, LIU W X, et al, 2017. Dysfunction of PLA2G6 and CYP2C44-associated network signals imminent carcinogenesis from chronic inflammation to hepatocellular carcinoma[J]. J Mol Cell Biol, 9(6): 489-503.
LIANG J, LI Z W, YUE C T, et al, 2022. Multi-modal optimization to identify personalized biomarkers for disease prediction of individual patients with cancer[J]. Brief Bioinform, 23(5): bbac254.
LITT B, ESTELLER R, ECHAUZ J, et al, 2001. Epileptic seizures may begin hours in advance of clinical onset: A report of five patients[J]. Neuron, 30(1): 51-64.
LIU J, DING D, ZHONG J, et al, 2022. Identifying the critical states and dynamic network biomarkers of cancers based on network entropy[J]. J Transl Med, 20(1): 254.
LIU J, LI C, 2024. Data-driven energy landscape reveals critical genes in cancer progression[J]. NPJ Syst Biol Appl, 10(1): 27.
LIU J, TAO Y, LAN R, et al, 2023. Identifying the critical state of cancers by single-sample Markov flow entropy[J]. PeerJ, 11: e15695.
LIU L, SHAO Z, LV J, et al, 2020a. Identification of early warning signals at the critical transition point of colorectal cancer based on dynamic network analysis[J]. Front Bioeng Biotechnol, 8: 530.
LIU R, AIHARA K, CHEN L, 2013a. Dynamical network biomarkers for identifying critical transitions and their driving networks of biologic processes[J]. Quant Biol, 1(2): 105-114.
LIU R, CHEN P, AIHARA K, et al, 2015. Identifying early-warning signals of critical transitions with strong noise by dynamical network markers[J]. Sci Rep, 5: 17501.
LIU R, CHEN P, CHEN L, 2020b. Single-sample landscape entropy reveals the imminent phase transition during disease progression[J]. Bioinformatics, 36(5): 1522-1532.
LIU R, LI M, LIU Z P, et al, 2012. Identifying critical transitions and their leading biomolecular networks in complex diseases[J]. Sci Rep, 2: 813.
LIU R, WANG J, UKAI M, et al, 2019a. Hunt for the tipping point during endocrine resistance process in breast cancer by dynamic network biomarkers[J]. J Mol Cell Biol, 11(8): 649-664.
LIU R, WANG X D, AIHARA K, et al, 2014a. Early diagnosis of complex diseases by molecular biomarkers, network biomarkers, and dynamical network biomarkers[J]. Med Res Rev, 34(3): 455-478.
LIU R, YU X, LIU X, et al, 2014b. Identifying critical transitions of complex diseases based on a single sample[J]. Bioinformatics, 30(11): 1579-1586.
LIU R, ZHONG J, HONG R, et al, 2021. Predicting local COVID-19 outbreaks and infectious disease epidemics based on landscape network entropy[J]. Sci Bull, 66(22): 2265-2270.
LIU X, CHANG X, LENG S, et al, 2019b. Detection for disease tipping points by landscape dynamic network biomarkers[J]. Natl Sci Rev, 6(4): 775-785.
LIU X, CHANG X, LIU R, et al, 2017. Quantifying critical states of complex diseases using single-sample dynamic network biomarkers[J]. PLoS Comput Biol, 13(7): e1005633.
LIU X, LIU R, ZHAO X M, et al, 2013b. Detecting early-warning signals of type 1 diabetes and its leading biomolecular networks by dynamical network biomarkers[J]. BMC Medl Genomics, 6(Suppl 2): S8.
MATURANA M I, MEISEL C, DELL K, et al, 2020. Critical slowing down as a biomarker for seizure susceptibility[J]. Nat Commun, 11(1): 2172.
MOJTAHEDI M, SKUPIN A, ZHOU J, et al, 2016. Cell fate decision as high-dimensional critical state transition[J]. PLoS Biol 14(12): e2000640.
MUKHERJI R, 2013. Ideas, interests, and the tipping point: Economic change in India[J]. Rev Int Polit Econ, 20(2): 363-389.
OLDE RIKKERT M G M, DAKOS V, BUCHMAN T G, et al, 2016. Slowing down of recovery as generic risk marker for acute severity transitions in chronic diseases[J]. Crit Care Med, 44(3): 601-606.
PENG X, GAO R, REN J, et al, 2023. Specific network information gain for detecting the critical state of colorectal cancer based on gut microbiome[J]. Brief Bioinform, 25(1): bbad465.
QUAX R, KANDHAI D, SLOOT P M A, 2013. Information dissipation as an early-warning signal for the Lehman Brothers collapse in financial time series[J]. Sci Rep, 3: 1898.
RICHARD A, BOULLU L, HERBACH U, et al, 2016. Single-cell-based analysis highlights a surge in cell-to-cell molecular variability preceding irreversible commitment in a differentiation process[J]. PLoS Biol, 14(12): e1002585.
RIETKERK M, BASTIAANSEN R, BANERJEE S, et al, 2021. Evasion of tipping in complex systems through spatial pattern formation[J]. Science, 374(6564): eabj0359.
RIETKERK M, DEKKER S C, de RUITER P C, et al, 2004. Self-organized patchiness and catastrophic shifts in ecosystems[J]. Science, 305(5692): 1926-1929.
RUNFOLA C, SHEHEITLI H, BARTOLOMEI F, et al, 2023. In pursuit of the epileptogenic zone in focal epilepsy: A dynamical network biomarker approach[J]. Commun Nonlinear Sci Numer Simul, 117: 106973.
SARKAR S, SINHA S K, LEVINE H, et al, 2019. Anticipating critical transitions in epithelial-hybrid-mesenchymal cell-fate determination[J]. Proc Natl Acad Sci, 116(52): 26343-26352.
SCHEFFER M, BASCOMPTE J, BROCK W A, et al, 2009. Early-warning signals for critical transitions[J]. Nature, 461(7260): 53-59.
SCIUTO A M, PHILLIPS C S, ORZOLEK L D, et al, 2005. Genomic analysis of murine pulmonary tissue following carbonyl chloride inhalation[J]. Chem Res Toxicol, 18(11): 1654-1660.
SHI J, AIHARA K, CHEN L, 2021. Dynamics-based data science in biology[J]. Natl Sci Rev, 8(5): nwab029.
SHI J, LI T, CHEN L, 2016. Towards a critical transition theory under different temporal s-cales and noise strengths[J]. Phys Rev E, 93(3): 032137.
STAPELBERG N J C, NEUMANN D L, SHUM D, et al, 2019. Health,pre-disease and critical transition to disease in the psycho-immune-neuroendocrine network: Are there distinct states in the progression from health to major depressive disorder?[J]. Physiol Behav, 198: 108-119.
TANAKA G, TSUMOTO K, TSUJI S, et al, 2008. Bifurcation analysis on a hybrid systems model of intermittent hormonal therapy for prostate cancer[J]. Phys D Nonlinear Phenom, 237(20): 2616-2627.
TANAKA H, OGISHIMA S, 2015. Network biology approach to epithelial-mesenchymal transition in cancer metastasis: Three stage theory[J]. J Mol Cell Biol, 7(3): 253-266.
TARAZONA A, FORMENT J, ELENA S F, 2019. Identifying early warning signals for the sudden transition from mild to severe tobacco etch disease by dynamical network biomarkers[J]. Viruses, 12(1): 16.
TREDICCE J R, LIPPI G L, MANDEL P, et al, 2004. Critical slowing down at a bifurcation[J]. Amer J Phys, 72(6): 799-809.
van de LEEMPUT I A, WICHERS M, CRAMER A O J, et al, 2014. Critical slowing down as early warning for the onset and termination of depression[J]. Proc Natl Acad Sci, 111(1): 87-92.
van NES E H, SCHEFFER M, 2007. Slow recovery from perturbations as a generic indicator of a nearby catastrophic shift[J]. Amer Nat, 169(6): 738-747.
VENEGAS J G, WINKLER T, MUSCH G, et al, 2005. Self-organized patchiness in asthma as a prelude to catastrophic shifts[J]. Nature, 434(7034): 777-782.
VIERA A J, 2011. Predisease: When does it make sense? [J]. Epidemiol Rev, 33: 122-134.
WANG R, DEARING J A, LANGDON P G, et al, 2012. Flickering gives early warning signals of a critical transition to a eutrophic lake state[J]. Nature, 492(7429): 419-422.
XIE Y, PENG X, LI P, 2024. MIWE: Detecting the critical states of complex biological systems by the mutual information weighted entropy[J]. BMC Bioinformatics, 25(1): 44.
YANG B, LI M, TANG W, et al, 2018. Dynamic network biomarker indicates pulmonary metastasis at the tipping point of hepatocellular carcinoma[J]. Nat Commun, 9(1): 678.
ZHONG J, HAN C, WANG Y, et al, 2022. Identifying the critical state of complex biological systems by the directed-network rank score method[J]. Bioinformatics, 38(24): 5398-5405.
ZHONG J, LIU R, CHEN P, 2020. Identifying critical state of complex diseases by single-sample Kullback-Leibler divergence[J]. BMC Genomics, 21(1): 87.
ZHONG Z, LI J, ZHONG J, et al, 2023. MAPKAPK2, a potential dynamic network biomarker of α-synuclein prior to its aggregation in PD patients[J]. NPJ Parkinsons Dis, 9(1): 41.
0
浏览量
5
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构