中山大学数学学院,广东 广州 510275
曹文洁(1995年生),女;研究方向:计算系统生物学; E-mail:caowj25@mail2.sysu.edu.cn
周天寿(1962年生),男;研究方向:计算系统生物学; E-mail:mcszhtsh@mail.sysu.edu.cn马氏和半马氏反应系统中的噪声效果分析*
纸质出版日期:2024-11-25,
网络出版日期:2024-07-25,
收稿日期:2024-04-09,
录用日期:2024-05-02
移动端阅览
曹文洁, 滕嘉琪, 陈浩文, 等. 马氏和半马氏反应系统中的噪声效果分析[J]. 中山大学学报(自然科学版)(中英文), 2024,63(6):291-300.
CAO Wenjie,TENG Jiaqi,CHEN Haowen,et al.Analysis of noise effects in Markov and semi-Markov reaction systems[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(06):291-300.
曹文洁, 滕嘉琪, 陈浩文, 等. 马氏和半马氏反应系统中的噪声效果分析[J]. 中山大学学报(自然科学版)(中英文), 2024,63(6):291-300. DOI: 10.13471/j.cnki.acta.snus.ZR20240108.
CAO Wenjie,TENG Jiaqi,CHEN Haowen,et al.Analysis of noise effects in Markov and semi-Markov reaction systems[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(06):291-300. DOI: 10.13471/j.cnki.acta.snus.ZR20240108.
基因调控网、信号转导网、代谢控制网和蛋白质相互网等生物分子网络是计算系统生物学的主要研究对象. 从随机过程的观点,这些网络可以划分为马氏反应网和非马氏反应网,依赖于分子机制的实验测定. 另一方面,由于生化反应事件是随机发生的,这必然会导致反应物种水平的涨落(即生化反应系统是固有噪声的). 这种分子噪声可能在自然选择、细胞命运决定、细胞内部过程等起着重要作用. 一个未完全解决的问题是分子噪声的生物学功能是什么. 本文分别分析地导出一般的马氏生化网络和一般的半马氏生化网络中分子噪声对各个反应物种水平影响的计算公式,并对一般的朗之万方程,建立了小噪声影响系统平衡态和特征值的两个实用定理. 此外,以广义生灭过程作为一个例子,分析地显示出分子记忆的效果等同于反馈的引入. 本文的分析结果既有宽广的应用前景,也为基于实验数据的统计推断奠定了基础.
Biomoleuclar networks such as gene regulatory networks, signal transduction networks, metabolic control networks, and protein-protein interaction networks, are main research subjects of computational systems biology. From the viewpoint of stochastic process, these networks can be categorized into Markov and non-Markov reaction networks, depending on experimental measurements of molecular mechanisms. On the other hand, biochemical reaction events happen stochastically, so this necessarily leads to fluctuations in reactive species levels (i.e.,biochemical reaction is inherently noisy). This molecular noise would play an important role in natural selection, cell fate determination, etc. An unsolved issue is what the biological function of molecular noise is. This article analytically derives calculation formulae for the influences of molecular noise on reactive species levels in general Markov and non-Markov reaction networks, and establishes two practical theorems for the influences of small noise on equilibrium states and characteristic values in a generic Langevin equation. In addition, it analytically shows that the effect of molecular memory is equivalent to the introduction of feedback by taking a generalized birth-death process as an example. The analytical results of this paper not only broad applications but also lay a foundation for statistical inferences based on experimental data.
马氏反应网络半马氏反应网络分子噪声化学主方程
Markov reaction networksemi-Markov reactionmolecular noisechemical master equation
周天寿,2009. 生物系统的随机动力学 [M]. 北京: 科学出版社.
周天寿,2019. 基因表达调控系统的定量分析[M]. 北京: 科学出版社.
AQUINO T, DENTZ M, 2017. Chemical continuous time random walks[J]. Phys Rev Lett, 119(23): 230601.
BOURRET R C, 1962. Stochastically perturbed fields, with applications to wave propagation in random media[J]. Nuovo Cimento, 26(1): 1-31.
BOURRET R C, 1965. Ficton theory of dynamical systems with noisy parameters[J]. Can J Phys, 43(4): 619-639.
CAO Z, GRIMA R, 2018. Linear mapping approximation of gene regulatory networks with stochastic dynamics[J]. Nat Commun, 9(1): 3305.
FELLER W, 2008. An introduction to probability theory and its applications[M]. New York: John Wiley & Sons.
FRIEDMAN N, CAI L, XIE X S, 2006. Linking stochastic dynamics to population distribution: An analytical framework of gene expression[J]. Phys Rev Lett, 97(16): 168302.
GARDINER C W, 2009. Stochastic methods: A handbook for the natural and social sciences[M]. New York: Springer.
GE H, QIAN H, XIE X S, 2015. Stochastic phenotype transition of a single cell in an intermediate region of gene state switching[J]. Phys Rev Lett, 114(7): 078101.
GILLESPIE D T, 1976. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions[J]. J Comput Phys, 22(4): 403-434.
GILLESPIE D T, 1978. Monte Carlo simulation of random walks with residence time dependent transition probability rates[J]. J Comput Phys, 28(3): 395-407.
GRIMA R, SCHMIDT D R, NEWMAN T J, 2012. Steady-state fluctuations of a genetic feedback loop: An exact solution[J]. J Chem Phys, 137(3): 035104.
JAEGER J C, NEWSTEAD G, 1969. An introduction to the Laplace transformation with engineering applications[M]. London: Methuen.
JIA T, KULLARNI R V, 2011. Intrinsic noise in stochastic models of gene expression with molecular memory and bursting [J]. Phys Rev Lett, 106(5): 058102.
LUO S H, WANG Z H, ZHANG Z Q, et al, 2023. Genome-wide inference reveals that feedback regulations constrain promoter-dependent transcriptional burst kinetics[J]. Nucleic Acids Res, 51(1): 68-83.
MASUDA N, PORTER M A, LAMBIOTTE R, 2017. Random walks and diffusion on networks[J]. Phys Rep, 716/717: 1-58.
NOVOZHILOV A S, KAREV G P, KOONIN E V, 2006. Biological applications of the theory of birth-and-death processes[J]. Brief Bioinform, 7(1): 70-85.
PEDRZA J M, PAULSSON J, 2008. Effects of molecular memory and bursting on fluctuations in gene expression[J]. Science, 319(5861): 339-343.
SCOTT M, HWA T, INGALLS B, 2007. Deterministic characterization of stochastic genetic circuits[J]. Proc Natl Acad Sci, 104(18): 7402-7407.
SHAHREZAEI V, SWAIN P S, 2008. Analytical distributions for stochastic gene expression[J]. Proc Natl Acad Sci, 105(45): 17256-17261.
van KAMPEN N G, 2007. Stochastic processes in physics and chemistry[M]. Amsterdam: North-Holland.
ZHANG J J, NIE Q, ZHOU T S, 2016. A moment-convergence method for stochastic analysis of biochemical reaction networks[J]. J Chem Phys, 144(19): 194109.
ZHANG J J, ZHOU T S, 2019. Markovian approaches to modeling intracellular reaction processes with molecular memory[J]. Proc Natl Acad Sci, 116(47): 23542-23550.
0
浏览量
4
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构