中山大学航空航天学院, 广东 深圳 518107
林振华(1996年生),男;研究方向:发动机燃烧;E-mail:linzhh68@mail2.sysu.edu.cn
陈钱(1983年生),男;研究方向:空气动力学与燃烧学; E-mail:chenq289@mail.sysu.edu.cn
纸质出版日期:2024-09-25,
网络出版日期:2024-07-23,
收稿日期:2024-04-06,
录用日期:2024-05-07
移动端阅览
林振华,陈钱.表面电弧放电等离子体激励调控稳焰器的流动与燃烧[J].中山大学学报(自然科学版)(中英文),2024,63(05):115-124.
LIN Zhenhua,CHEN Qian.Flow and combustion control by surface arc discharge plasma actuation for flameholder[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(05):115-124.
林振华,陈钱.表面电弧放电等离子体激励调控稳焰器的流动与燃烧[J].中山大学学报(自然科学版)(中英文),2024,63(05):115-124. DOI: 10.13471/j.cnki.acta.snus.ZR20240103.
LIN Zhenhua,CHEN Qian.Flow and combustion control by surface arc discharge plasma actuation for flameholder[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(05):115-124. DOI: 10.13471/j.cnki.acta.snus.ZR20240103.
针对表面电弧放电等离子体激励对稳焰器的调控问题,对表面电弧放电唯象模型的适用性进行了验证,并分析了不同激励位置和激励强度对稳焰器流场结构、燃料雾化、点火延迟以及火焰稳定性的影响。研究结果显示,不同激励位置对流场结构产生显著影响,尤其在激励能量有效集中时,形成强烈的激励区域,导致回流区膨胀,进而促进燃料雾化,减缓点火延迟及提高平均火焰温度。同时,随着激励强度的增加,回流区长度、混合效率和燃烧效率呈线性增加。
According to the control mechanism of surface arc discharge plasma actuation on the flow and combustion of flameholder, the applicability of the phenomenological model of surface arc discharge is verified. And, the effects of different actuation positions and actuation intensities on the flow field structure, fuel atomization, ignition delay and flame stability in the flameholder are systematically analyzed. The results show that different actuation positions have a significant impact on the flow field structure, especially when the actuation energy is effectively concentrated and a strong actuation region is formed, which leads to the expansion of the recirculation zone, which in turn promotes fuel atomization, slows down the ignition delay and increases the average flame temperature. At the same time, with the increase of actuation intensity, the length of the recirculation zone, the mixing efficiency and the combustion efficiency increased linearly.
蒸发式稳焰器流动燃烧表面电弧等离子体激励
flameholderflowcombustionsurface arc chargeplasma actuation
ANDERSON K, KNIGHT D, 2011.Interaction of heated filaments with a blunt cylinder in supersonic flow[J]. Shock Waves, 21 (2): 149-161.
FENG R,LI J,WU Y,et al,2018.Experimental investigation on gliding arc discharge plasma ignition and flame stabilization in scramjet combustor[J].Aerosp Sci Technol, 79: 145-153.
FENG R, LI J, WU Y, et al, 2020. Ignition and blow-off process assisted by the rotating gliding arc plasma in a swirl combustor[J]. Aerosp Sci Technol, 99: 105752.
GANG L,2014.Numerical investigation on the supersonic combustion of liquid kerosene in a dual-staged strut based scramjet combustor[C]// 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference.
GERLINGER P,STOLL P,KINDLER M,et al,2008. Numerical investigation of mixing and combustion enhancement in supersonic combustors by strut induced streamwise vorticity[J]. Aerosp Sci Technol,12(2):159-168.
HUANG S,WU Y, ZHANG K, et al, 2021.Experimental investigation of spray characteristics of gliding arc plasma airblast fuel injector[J]. Fuel, 293:120382.
HUANG S,WU Y,ZHANG K,et al,2022. Experimental investigation on spray and ignition characteristics of plasma actuated Bluff body flameholder[J]. Fuel, 309:122215.
LEONOV S B,YARANTSEV D A,2008a.Control of separation phenomena in a high-speed flow by means of the surface electric discharge[J]. Fluid Dyn, 43(6): 945-953.
LEONOV S B, DMITRY A Y, 2008b. Near-surface electrical discharge in supersonic airflow: Properties and flow control[J]. J Propul Power, 24(6):1168-1181.
LEONOV S B, ADAMOVICH I V, SOLOVIEV V R,2016. Dynamics of near-surface electric discharges and mechanisms of their interaction with the airflow[J]. Plasma Sources Sci T, 25(6):063001.
REUTER C B,OMBRELLO T M,2022.Numerical simulations of ozone addition to strained flames[J]. Combust Sci Technol, 194(15): 3225-3245.
STARIKOVSKAIA S M, 2014. Plasma-assisted ignition and combustion:Nanosecond discharges and development of kinetic mechanisms[J]. J Phys D Appl Phys, 47 (35): 353001.
STARIKOVSKAIA S, LACOSTE D A,COLONNA G,2021.Non-equilibrium plasma for ignition and combustion enhancement[J]. Eur Phys J D, 75(8): 231.
SUN Q,CHENG B,YU Y,et al,2010. A study of variation patterns of shock wave control by different plasma aerodynamic actuations[J]. Plasma Sci Technol,12(6):708-714.
WANG J, LI Y, XING F, 2009.Investigation on oblique shock wave control by arc discharge plasma in supersonic airflow[J]. J Appl Phys,106(7): 073307.
WATANABE Y,HOUPT A,LEONOV S B,2019.Plasma-assisted control of supersonic flow over a compression ramp[J]. Aerospace, 6(3):35.
YAN H, LIU F, XU J, et al, 2018. Study of oblique shock wave control by surface arc discharge plasma[J]. AIAA J, 56 (2): 532-541.
0
浏览量
41
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构