中山大学航空航天学院,广东 深圳 518107
蔡树峰(2000年生),男;研究方向:空气动力学与燃烧学;E-mail:caishf6@mail2.sysu.edu.cn
陈钱(1983年生),男;研究方向:空气动力学与燃烧学; E-mail:chenq289@mail.sysu.edu.cn
网络出版日期:2024-10-15,
收稿日期:2024-04-06,
录用日期:2024-06-27
移动端阅览
蔡树峰, 陈钱. 介质阻挡放电等离子体激励调控稳焰器液雾场[J/OL]. 中山大学学报(自然科学版)(中英文), 2024,1-9.
CAI Shufeng, CHEN Qian. Flameholder spray control by dielectric barrier discharge plasma actuation[J/OL]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2024,1-9.
蔡树峰, 陈钱. 介质阻挡放电等离子体激励调控稳焰器液雾场[J/OL]. 中山大学学报(自然科学版)(中英文), 2024,1-9. DOI: 10.13471/j.cnki.acta.snus.ZR20240102.
CAI Shufeng, CHEN Qian. Flameholder spray control by dielectric barrier discharge plasma actuation[J/OL]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2024,1-9. DOI: 10.13471/j.cnki.acta.snus.ZR20240102.
对亚声速燃烧室蒸发式稳焰器的非定常煤油液雾流场进行了介质阻挡放电等离子体激励调控研究。利用欧拉-拉格朗日方法,实现湍流空气与离散液滴的双向耦合,并采用体积力模拟介质阻挡放电等离子体对流场的作用。研究结果表明:不同激励位置、激励电压和激励频率的介质阻挡放电等离子体激励能够通过改变流体的局部动量,对稳焰器后的再循环区流场、煤油液雾场以及煤油和空气的混合产生调控作用。通过流场和液雾场的分析,能确定特定来流条件对应的最优激励参数。在本研究的来流条件下,稳焰器壁面前段外侧位置处施加15 kV和15 kHz的等离子体激励能够增加稳焰器后的再循环区长度和低速区域面积,改善煤油雾化和蒸发效果,促使燃料-氧化剂充分混合,延长可燃混合物的停留时间,有利于实现可靠点火和维持稳定燃烧。
A study on the unsteady kerosene spray field of subsonic combustor evaporative flameholder was carried out. The Euler-Lagrange method is used to realize the two-way coupling of turbulent air and discrete droplet, and the effect of dielectric barrier discharge plasma on the flow field is simulated by volume force. The research results indicate that dielectric barrier discharge plasma actuation with different actuation position, actuation voltage and actuation frequency can control the flow field in the recirculation zone after the flameholder, the kerosene spray field and the mixing of kerosene and air through changing the local momentum of the fluid. The optimal actuation parameters corresponding to the specific flow conditions can often be determined. Specifically, under the conditions of incoming flow studied in this paper, applying plasma actuation with a voltage of 15 kV and a frequency of 15 kHz at the front section outside the flameholder wall can increase the length of the recirculation zone and the area of the low-speed region behind the flameholder, improve the kerosene atomization and evaporation, promote the mixing of fuel and oxidizer, prolong the residence time of the combustible mixture, and thereby facilitate reliable ignition and sustain stable combustion.
蒸发式稳焰器煤油液雾场调控介质阻挡放电等离子体激励
evaporative flameholderkerosene spray fieldcontroldielectric barrier dischargeplasma actuation
杜一庆, 2005. 高温、低阻、高效加力燃烧室火焰稳定器机理研究[D]. 武汉: 华中科技大学.
何小民, 张净玉, 李建中, 2015. 航空发动机燃烧室原理[M]. 北京: 北京航空航天大学出版社.
洪流, 杨国华, 2010.来流马赫数和余气系数对蒸发式火焰稳定器燃烧特性的影响[J].航空工程进展,1(2): 173-177.
金莉, 谭永华, 2006. 火焰稳定器综述[J].火箭推进,32(1): 30-34.
李应红, 吴云, 2020. 等离子体激励调控流动与燃烧的研究进展与展望[J]. 中国科学:技术科学, 50(10): 1252-1273.
王祎, 吴宝元, 2017. 基于CFD的钝体稳焰器近尾迹流动研究进展及展望[C]//第二届空天动力联合会议: 7.
张凯,陈玮琦,黄胜方,等, 2022. 滑动弧等离子体拓宽蒸发式火焰稳定器点熄火边界实验研究[C]//2021航空发动机技术发展高层论坛: 5-12.
张孝春, 孙雨超, 刘涛, 2014. 先进加力燃烧室设计技术综述[J]. 航空发动机, 40(2): 24-30+60.
ABDELRAOUF H, ELMEKAWY A M N, KASSAB S Z, 2020. Simulations of flow separation control numerically using different plasma actuator models[J]. Alex Eng J, 59(5): 3881-3896.
CHENG X, FAN Y, 2016. Experimental study of lean ignition and lean blowout performance improvement using an evaporation flameholder[J]. Int J Heat Mass Tran, 103: 319-326.
CUI W, JIA M, LIN D, et al, 2022. Active flow control of a flame-holder wake using nanosecond-pulsed surface-dielectric-barrier discharge in a low-pressure environment[J]. Processes, 10(8): 1519.
FU X, YANG F, GUO Z, 2015. Combustion instability of pilot flame in a pilot bluff body stabilized combustor[J]. Chinese J Aeronaut, 28(6): 1606-1615.
GLASSMAN I, YETTER R A, GLUMAC N G, 2014. Combustion[M]. Oxford: Academic Press.
HUANG Y, HE X, ZHANG H, et al, 2021. Spark ignition and stability limits of spray kerosene flames under subatmospheric pressure conditions[J]. Aerosp Sci Technol, 114: 106734.
HUANG S, WU Y, ZHANG K, et al, 2022. Experimental investigation on spray and ignition characteristics of plasma actuated bluff body flameholder[J]. Fuel, 309: 122215.
JIA M, ZANG Y, CUI W, et al, 2022. Experimental investigation on flow characteristics and ignition performance of plasma-actuated flame holder[J]. Processes, 10(9): 1848.
LIU R, LIU Y, GAO Z, 2017. Structural parameters effects on lean blowout performance and prediction method for piloted vaporization flameholder[J].J Propuls Technol, 38(12): 2753-2760.
MOREAU E, 2007. Airflow control by non-thermal plasma actuators[J]. J Phys D: Appl Phys, 40(3): 605.
SHYY W, JAYARAMAN B, ANDERSSON A, 2002. Modeling of glow discharge-induced fluid dynamics[J]. J Appl Phys, 92(11): 6434-6443.
TAI Z, CHEN Q, NIU X, et al., 2023. Plasma actuation for the turbulent mixing of fuel droplets and oxidant air in an aerospace combustor[J]. Aerospace, 10(1): 77.
YANG V, CULICK F E C, 1986. Analysis of low frequency combustion instabilities in a laboratory ramjet combustor[J]. Combust Sci Technol, 45(1/2): 1-25.
0
浏览量
7
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构