1.广东开放大学, 广东 广州 510091
2.华南理工大学物理与光电学院, 广东 广州 510640
戚志明(1979年生),女;研究方向:全息光学、计算机应用;E-mail:zmqi@gdrtvu.edu.cn
梁文耀(1981年生),男;研究方向:光子晶体、拓扑光子学;E-mail:liangwenyao@scut.edu.cn
纸质出版日期:2024-07-25,
网络出版日期:2024-06-05,
收稿日期:2024-03-24,
录用日期:2024-04-19
移动端阅览
戚志明,梁文耀.多场景光子晶体全息制作虚拟仿真实验的设计[J].中山大学学报(自然科学版)(中英文),2024,63(04):149-157.
QI Zhiming,LIANG Wenyao.Design of virtual simulation experiment for multi-scene photonic crystal holographic fabrication[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(04):149-157.
戚志明,梁文耀.多场景光子晶体全息制作虚拟仿真实验的设计[J].中山大学学报(自然科学版)(中英文),2024,63(04):149-157. DOI: 10.13471/j.cnki.acta.snus.ZR20240084.
QI Zhiming,LIANG Wenyao.Design of virtual simulation experiment for multi-scene photonic crystal holographic fabrication[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(04):149-157. DOI: 10.13471/j.cnki.acta.snus.ZR20240084.
光子晶体是类比晶体结构制作的人工电磁材料,被称为光子半导体。本文利用全息干涉原理设计了二维简单、二维复式和三维简单等多种晶格类型光子晶体的实验光路,并采用Unity、C#、3dsMax等计算机工具开发了上述三种场景的虚拟仿真实验平台。该平台能够实现虚拟激光的产生、传播和再生,以及光束的自动反射、分束等功能,而且支持不同类型光子晶体制作光路的自由设计,具有形象直观、调节方便、图案丰富、低成本、开放性强等优点。
Photonic crystal(PC) are artificial electromagnetic material realized by analogy with crystal structures,known as photonic semiconductors. The experimental optical paths of two-dimensional simple triangular PC, two-dimensional complex square PC, and three-dimensional simple PC have been designed by using multi-beam holographic interferometric method in this paper. The multi-scene virtual simulation experimental platform is developed by using computer tools such as Unity, C#, and 3dsMax comprehensively. This virtual platform can realize the generation, propagation, and regeneration of virtual laser, as well as the automatic reflection, splitting and other functions of the virtual laser beam. Besides, it also supports the arbitrary design of optical path for forming various PC. Such virtual experimental platform possesses the advantages of figurative, intuitive, convenient control, rich patterns, low cost, and strong openness.
光子晶体多场景全息制作虚拟仿真
photonic crystalmulti-sceneholographic fabricationvirtual simulation
董建文, 陈定尘, 庞晓宁, 等, 2014. 空域计算全息三维成像技术[J]. 中国激光, 41(7): 7-16.
邓莉, 孙可, 刘金梅, 等, 2022. Unity内嵌Matlab子程序实现迈克尔逊干涉仪虚拟仿真实验中的干涉动态演示[J]. 大学物理实验, 35(3): 124-130.
胡德骄, 王震, 罗铁威, 等, 2023. 面向大数据应用的大容量全息光存储技术研究进展[J]. 中国激光, 50(18): 40-53.
黄昆原, 韩汝琦, 1988. 固体物理学[M]. 北京: 高等教育出版社: 6-28.
梁文耀, 杨佳琪, 李志远, 2021. 多光束全息干涉法制作复式光子晶体的数值仿真研究[J]. 光学学报, 41(11): 1116002.
梁艳明, 吴琦, 周建英, 2010. 三维光场的计算全息设计与再现研究[J]. 中山大学学报(自然科学版), 49(5): 56-60.
刘娟, 皮大普, 王涌天, 2023. 实时全息三维显示技术研究进展[J]. 光学学报, 43(15): 128-141.
马佳洪, 叶晓靖, 陈武喝, 2023. 源于中国散裂中子源的示范性虚拟仿真实验教学项目建设[J]. 物理实验, 43(8): 43-47.
戚志明, 梁文耀, 陈武喝, 2014. 实时全息微结构制作的计算机仿真与设计[J]. 中山大学学报(自然科学版), 53(4): 69-73.
杨智慧, 刘海林, 王晓峰, 等, 2021. 康普顿散射虚拟仿真实验设计及教学实践[J]. 实验室研究与探索, 40(3): 102-106+128.
张勇, 贾洪声, 刘惠莲, 等, 2022. 超高压物理实验技术虚拟仿真实验设计与实现[J]. 大学物理实验, 35(5): 113-117.
AEBY S, AUBRY G J, MULLER N, et al, 2021. Scattering from controlled defects in woodpile photonic crystals[J]. Adv Opt Mater, 9(6): 2001699.
BOXER M, MAZLOUMI M, SNELL P, et al, 2022. Large-area photonic crystals,quasicrystals,and moire quasicrystals fabricated on azobenzene molecular glass films by pyramidal interference lithography[J]. Opt Mater Express, 12(11): 4362-4374.
BISWAS U, NAYAK C, RAKSHIT J K, et al, 2023. Fabrication techniques and applications of two-dimensional photonic crystal: History and the present status[J]. Opt Eng, 62(1): 010901.
CAI Z Y, LI Z W, RAVAINE S, et al, 2021. From colloidal particles to photonic crystals: Advances in self-assembly and their emerging applications[J]. Chem Soc Rev, 50(10): 5898-5951.
HUANG M, ZHAO F L, CHENG Y, et al, 2012. Effects of the amorphous layer on laser-induced subwavelength structures on carbon allotropes[J]. Opt Lett, 37(4): 677-679.
HURLEY N, KAMAU S, CUI J B, et al, 2023. Holographic fabrication of 3D moire photonic crystals using circularly polarized laser beams and a spatial light modulator[J]. Micromachines, 14(6):1217.
JOANNOPOULOS J D, JOHNSON S G, WINN J N, et al, 2008. Photonic crystals: Molding the flow of light[M]. Princeton: Princeton University Press.
LI X B, LI Z Y, LIANG W Y, 2023a. Tunable topological slow-light in gyromagnetic photonic crystal waveguides with unified magnetic field[J]. Opt Express, 31(18): 29300-29311.
LI J Q, YAN J F, JIANG L, et al, 2023b. Nanoscale multi-beam lithography of photonic crystals with ultrafast laser[J]. Light Sci Appl, 12(1): 164.
LIU Y Z, PANG X N, JIANG S J, et al, 2013.Viewing-angle enlargement in holographic augmented reality using time division and spatial tiling[J]. Opt Express, 21(10): 12068-12076.
LÜ H, CHU C X, YOU K, et al, 2017. Fabrication of two-dimensional special photonic crystals by symmetry-lost beam interference lithography[J]. Optik, 140: 25-31.
MAO W D, ZHONG Y C, DONG J W, et al, 2005. Crystallography of two-dimensional photonic lattices formed by holography of three noncoplanar beams[J]. J Opt Soc Am B, 22(5): 1085-1091.
SUN X H, WU Y L, LIU W, et al, 2015. Fabrication of ten-fold photonic quasicrystalline structures[J]. AIP Adv, 5(5): 057108.
TIAN Y L, LI Q B, YAN L L, et al, 2023. A brief review on nonlinear photonic crystals induced by direct femtosecond laser writing[J]. Photonics, 10(7): 833.
WU F, LIU T T, CHEN M Y, et al, 2022. Photonic bandgap engineering in hybrid one-dimensional photonic crystals containing all-dielectric elliptical metamaterials[J]. Opt Express, 30(19): 33911-33925.
XIA C, GUTIERREZ J J, KUEBLER S M, et al, 2022. cylindrical-lens-embedded photonic crystal based on self-collimation[J]. Opt Express, 30(6): 9165-9180.
XIONG J H, HSIANG E L, HE Z Q, et al, 2021. Augmented reality and virtual reality displays: Emerging technologies and future perspectives[J]. Light Sci Appl, 10(1): 216.
YABLONOVITCH E, GMITTER T J, LEUNG K M, 1991. Photonic band structure: The face-centered-cubic case employing non-spherical atoms[J]. Phys Rev Lett, 67(17): 2295-2298.
YAO Y W, ZHANG Y P, FU Q Y, et al, 2024. Adaptive layer-based computer-generated holograms[J]. Opt Lett, 49(6):1481-1484.
ZHOU Y, WANG Z W, WAN B F, et al, 2022. The absolute photonic band gaps and all-angle negative refraction phenomenon of two-dimensional photonic crystals composed of multi-ring scatterers[J]. Phys B Condens Matter, 632: 413698.
0
浏览量
60
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构