1.中山大学中法核工程与核技术学院, 广东 珠海 519082
2.中国核动力研究设计院 / 核反应堆系统设计技术重点实验室, 四川 成都 610012
孙宇蒙(1999年生),男;研究方向:反应堆热工水力;E-mail:sunym28@mail2.sysu.edu.cn
李捷(1986年生),男;研究方向:反应堆热工水力;E-mail:lijie287@mail.sysu.edu.cn
纸质出版日期:2024-07-25,
网络出版日期:2024-04-08,
收稿日期:2024-02-27,
录用日期:2024-03-26
移动端阅览
孙宇蒙,李捷,魏宗岚等.基于直接数值模拟的压力容器入口射流湍流模型评价[J].中山大学学报(自然科学版)(中英文),2024,63(04):88-96.
SUN Yumeng,LI Jie,WEI Zonglan,et al.Assessment of jet turbulence model of pressure vessels inset pipe based on direct numerical simulation[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(04):88-96.
孙宇蒙,李捷,魏宗岚等.基于直接数值模拟的压力容器入口射流湍流模型评价[J].中山大学学报(自然科学版)(中英文),2024,63(04):88-96. DOI: 10.13471/j.cnki.acta.snus.ZR20240058.
SUN Yumeng,LI Jie,WEI Zonglan,et al.Assessment of jet turbulence model of pressure vessels inset pipe based on direct numerical simulation[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(04):88-96. DOI: 10.13471/j.cnki.acta.snus.ZR20240058.
采用基于谱元法的开源软件Nek5000对压力容器入口射流进行直接数值模拟(DNS)。压力容器模拟在环向简化为1/3的尺度,主管段雷诺数为63 700,下降段雷诺数为14 014,工质为碘化钠溶液。通过对常见物理量进行统计,构建高精度湍流数据
库。并采用FLUENT对常见的壁面函数和湍流模型进行适应性评价,评价标准包括速度、湍动能和湍流黏度。结果表明:在上升段Stress-
ω
模型适用性最好;在下降段,Standard
k-ω
模型适用性最优。
The open-source software Nek5000, based on the spectral element method, was used to conduct direct numerical simulation (DNS) of the pressure vessel inset pipe. A simplified 1/3 scale pressure vessel with a main pipe
Re
of 63 700, a downcomer section
Re
of 14 014, and a flowing medium of sodium iodide solution were used for the simulations. Turbulent statistics were conducted on common physical quantities, leading to the construction of a highly accurate turbulent flow database. Fluent was used to conduct an adaptive assessment of common wall functions and turbulent models, with assessment criteria based on velocity, turbulent kinetic energy, and turbulent viscosity. The findings indicate that the Stress-
ω
model is optimal for the rising section, whereas the Standard
k-ω
model is preferable for the downcomer section.
压力容器射流直接数值模拟湍流模型壁面函数评价
pressure vesseljetDNSturbulence modelwall functionassessment
黄雷, 佟立丽, 2019. 压力容器下腔室冷却剂流动特性数值模拟研究[J].核科学与工程,39(1):42-50.
蒋兴, 贺寅彪, 张明, 2020. 承压热冲击瞬态下反应堆压力容器下降环腔内三维热工水力分析[J].压力容器, 37(4):46-49.
蒋兴, 翁羽, 王海军, 2021. 反应堆压力容器直接安注热分布特性研究[J].核动力工程,42(5):119-122.
康慧伦, 田兆斐, 胡培政, 等, 2021. MRANS方案的反应堆压力容器CFD仿真[J].哈尔滨工业大学学报,53(12):127-134.
FISCHER P, LOTTES J, TUFO H, 2007. Nek5000[R]. Argonne, IL (United States):Argonne National Lab(ANL).
LUCAS D, BESTION D, BODÈLE E, et al, 2009. An overview of the pressurized thermal shock issue in the context of the NURESIM project[J]. Sci Technol Nuclear Install,2009:583259.
MENG T, ZHAO F, CHENG K, et al, 2019. Numerical study of flow and heat transfer characteristic of space gas-cooled nuclear reactor core[J]. Atomic Energy Sci Tech, 53(7): 1264.
MULLOY J R, JOHN P, 2018. A RANS analysis of pressurized thermal shock phenomena in nuclear reactor geometries using star CCM+[D].Texas:Texas A&M University.
SHARABI M, GONZÁLEZ-ALBUIXECH V F, LAFFERTY N, et al, 2016. Computational fluid dynamics study of pressurized thermal shock phenomena in the reactor pressure vessel[J]. Nucl Eng Des, 299: 136-145.
ZHANG Q, LIU L, ZENG Y, et al, 2022. Numerical simulation of inherent boric mixing phenomenon inside reactor annular down-comer[J]. Prog Nucl Energy, 148: 104230.
ZENG Y, ZHANG Q, CHEN H, et al, 2023. Numerical investigation of the external emergency coolant transportation inside reactor annular down-comer[J]. Ann Nucl Energy, 187: 109780.
0
浏览量
36
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构