中山大学材料科学与工程学院,广东 广州 510006
潘君晞(1999年生),男;研究方向:熔盐材料;E-mail:panjx5@mail2.sysu.edu.cn
刘书乐(1985年生),男;研究方向:计算材料学;E-mail:liushle@mail.sysu.edu.cn
纸质出版日期:2024-07-25,
网络出版日期:2024-04-07,
收稿日期:2024-02-18,
录用日期:2024-03-15
移动端阅览
潘君晞,丁静,刘书乐.二元碳酸熔盐在氧化镍表面热物性的分子动力学模拟[J].中山大学学报(自然科学版)(中英文),2024,63(04):141-148.
PAN Junxi,DING Jing,LIU Shule.Molecular dynamics simulations of thermophysical properties of binary carbonate molten salt at nickel oxide surface[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(04):141-148.
潘君晞,丁静,刘书乐.二元碳酸熔盐在氧化镍表面热物性的分子动力学模拟[J].中山大学学报(自然科学版)(中英文),2024,63(04):141-148. DOI: 10.13471/j.cnki.acta.snus.ZR20240051.
PAN Junxi,DING Jing,LIU Shule.Molecular dynamics simulations of thermophysical properties of binary carbonate molten salt at nickel oxide surface[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(04):141-148. DOI: 10.13471/j.cnki.acta.snus.ZR20240051.
采用分子动力学模拟方法,研究了高温下碳酸钠、碳酸钾二元熔盐与氧化镍板的界面体系。研究得到了界面热阻、热导率和黏度等热物性随温度的变化规律,对比了不同温度下均相熔盐材料和界面处熔盐材料的热物性的差异,并且通过密度分布和径向分布函数揭示了热物性发生变化的微观机制。模拟结果显示:温度升高时,熔盐离子间距离增加,范德华力和库仑力相互作用减弱,使得离子间能量传递更加困难,界面热阻、熔盐热导率均下降;同时,熔盐黏度也因为相互作用减弱,熔盐离子自身振动能量增加、运动趋向增强而下降。
Molecular dynamics (MD) simulations were conducted in this research to investigate the interface system between a binary carbonate molten salt and a nickel oxide slab. In this study, we elucidate the trends of interface thermal resistance, thermal conductivity, and viscosity with increasing temperature by analyzing the density distribution and radial distribution functions (RDF). We also compare the differences in properties between single-phase molten salt and molten salt near the slab. Simulation results show that the increase in temperature results in an expansion of ion distance and weakening of their Van Der Waals interactions and Coulombic interactions, making energy transition more difficult. Consequently, there is a decrease in interface thermal resistance and thermal conductivity. Meanwhile, the viscosity decreases due to weaker interactions among ions as well as increased energy and movement tendencies.
碳酸熔盐燃料电池熔盐界面分子动力学热物性
smolten carbonate fuel cellmolten saltinterfacemolecular dynamicthermophysical properties
丁静, 黄成龙, 杜丽禅, 等, 2017. 掺镁碳酸熔盐液体导热特性[J]. 化工学报, 68(11): 4407-4413.
何伯述, 应兆平, 苏良彬, 等, 2021. 熔盐基纳米流体管内流动换热特性模拟[J]. 华南理工大学学报(自然科学版), 49(2): 33-39.
杨春桃, 2017. 金属材料在硝酸熔盐中的腐蚀机理研究 [D]. 广州:华南理工大学.
杨小平, 杨晓西, 丁静, 等, 2011. 太阳能高温热发电蓄热技术研究进展[J]. 热能动力工程, 26(1): 1-6+118.
杨薛明, 陶嘉伟, 孟凡星, 等, 2023. Li2CO3/Na2CO3/K2CO3及其混合熔融盐储热材料热物性分子动力学研究[J]. 太阳能学报, 44(5): 48-58.
尹辉斌, 丁静, 杨晓西, 等, 2013. 碳酸熔盐传热蓄热材料的制备与热性能 [J]. 工程热物理学报, 34(5): 952-956.
张跃, 2007. 计算材料学基础[M]. 北京:北京航空航天大学出版社.
BONK A, BRAUN M, SOTZ V A, et al, 2020. Solar salt- pushing an old material for energy storage to a new limit [J]. Appl Energy, 262:114535.
CAHILL D G, FORD W K, GOODSON K E, et al, 2003. Nanoscale thermal transport[J]. J Appl Phys, 93(2): 793-818.
CHEN H Z, LI B R, WEN B, et al, 2020. Corrosion resistance of iron-chromium-aluminium steel in eutectic molten salts under thermal cycling conditions[J]. Corros Sci, 173: 108798.
CHEN J, XU X F, ZHOU J, et al, 2022. Interfacial thermal resistance: Past, present, and future[J]. Rev Mod Phys, 94(2):025002.
CHOI Y K, KERN N R, KIM S, et al, 2022. CHARMM-GUI nanomaterial modeler for modeling and simulation of nanomaterial systems [J]. J Chem Theory Comput, 18(1): 479-493.
DARDEN T, YORK D, PEDERSEN L, 1993. Particle mesh Ewald: An N.log(N) method for Ewald sums in large systems[J]. J Chem Phys, 98(12): 10089-10092.
DUAN L Q, YUE L, QU W J, et al, 2015. Study on CO2 capture from molten carbonate fuel cell hybrid system integrated with oxygen ion transfer membrane[J]. Energy, 93: 20-30.
ESNOUF R M, SMITH A C D, GROUT P J, 1988. The computer simulation of the metal-molten salt interface[J]. Philos Magazine A, 58(1): 27-35.
FERNáNDEZ A G, CABEZA L F, 2019. Corrosion monitoring and mitigation techniques on advanced thermal energy storage materials for CSP plants[J]. Sol Energy Mater Sol Cells, 192: 179-187.
GHERIBI A E, CHARTRAND P, 2016. Thermal conductivity of molten salt mixtures: Theoretical model supported by equilibrium molecular dynamics simulations[J]. J Chem Phys, 144(8): 084506.
HANSEN J P, McDONALD I R, 2006. Theory of simple liquids [M]. Burlington: Academic Press.
JIANG Y F, SUN Y P, BRUNO F,et al, 2017. Thermal stability of Na2CO3-Li2CO3 as a high temperature phase change material for thermal energy storage[J].Thermochim Acta, 650: 88-94.
JANZ G J, ALLEN C B, BANSAL N P, et al, 1979. Physical properties data compilations relevant to energy storage. II. Molten salts: Data on single and multi-component salt systems[M]. Troy, New York: Molten Salts Data Center,Cogswell Laboratory Rensselaer Polytechnic Institute.
JO S, KIM T, IYER V G, et al, 2008. Software news and updates-CHARNIM-GUI: A Web-based grraphical user interface for CHARMM[J]. J Comput Chem, 29(11): 1859-1865.
LEE A A, PERKIN S, 2016. Ion-image interactions and phase transition at electrolyte-metal interfaces[J]. J Phys Chem Lett, 7(14): 2753-2757.
LIANG F, PAN G C Q, WANG W L, et al, 2022. Enhanced thermal transport at metal/molten salt interface in nanoconfinement: A molecular dynamics study[J]. J Mol Liq, 359:119362.
MARTINEZ L, ANDRADE R, BIRGIN E G, et al, 2009. PACKMOL: A package for building initial configurations for molecular dynamics simulations[J]. J Comput Chem, 30(13): 2157-2164.
PAN G C Q, WEI X L, YU C, et al, 2020. Thermal performance of a binary carbonate molten eutectic salt for high-temperature energy storage applications[J]. Appl Energy, 262:114418.
ROEST D L, BALLONE P, BEDEAUX D, et al, 2017. Molecular dynamics simulations of metal/molten alkali carbonate interfaces[J]. J Phys Chem C, 121(33): 17827-17847.
SOTZ V A, BONK A, STEINBRECHER J, et al, 2020. Defined purge gas composition stabilizes molten nitrate salt-experimental prove and thermodynamic calculations [J]. Sol Energy, 211: 453-462.
STEINBACH P J, BROOKS B R, 1994. New spherical-cutoff methods for long-range forces in macromolecular simulation[J]. J Comput Chem, 15(7): 667-683.
SUNHWAN J, TAEHOON K, IYER V G,et al,2008. CHARMM-GUI: A Web-based graphical user interface for CHARMM[J]. J Comput Chem, 29(11): 104-110.
THOMPSON A P, AKTULGA H M, BERGER R, et al, 2022. LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales[J].Comput Phys Commun, 271:108171.
TIAN J X, ZHANG L B, 2016. Contribution to modeling the viscosity Arrhenius-type equation for saturated pure fluids[J]. Int J Mod Phys B, 30(27):1650202.
YOUNG J M, MONDAL A, BARCKHOLTZ T A, et al, 2021. Predicting chemical reaction equilibria in molten carbonate fuel cells via molecular simulations[J]. Aiche J, 67(3):e16988.
YUAN F, LI M J, MA Z, et al, 2018. Experimental study on thermal performance of high-temperature molten salt cascaded latent heat thermal energy storage system[J]. Int J Heat Mass Transf, 118: 997-1011.
0
浏览量
75
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构