1.广东省地球动力作用与地质灾害重点实验室 / 中山大学地球科学与工程学院 / 南方海洋科学与工程广东省实验室(珠海),广东 珠海 519082
2.南京大学地球科学与工程学院,江苏 南京 210023
3.School of Earth, Atmosphere and Environment, Monash University, Melbourne VIC 3800, Australia
王岳军(1969年生),男;研究方向:华南及东南亚大地构造演化;E-mail:wangyuejun@mail.sysu.edu.cn
纸质出版日期:2024-03-25,
网络出版日期:2024-03-16,
收稿日期:2024-02-05,
录用日期:2024-02-23
扫 描 看 全 文
王岳军,舒良树,张玉芝等.华南东部元古代构造格局及其古位置重建[J].中山大学学报(自然科学版)(中英文),2024,63(02):1-25.
WANG Yuejun,SHU Liangshu,ZHANG Yuzhi,et al.Proterozoic tectonics of eastern South China and their Paleo-location reconstruction[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(02):1-25.
王岳军,舒良树,张玉芝等.华南东部元古代构造格局及其古位置重建[J].中山大学学报(自然科学版)(中英文),2024,63(02):1-25. DOI: 10.13471/j.cnki.acta.snus.ZR20240043.
WANG Yuejun,SHU Liangshu,ZHANG Yuzhi,et al.Proterozoic tectonics of eastern South China and their Paleo-location reconstruction[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(02):1-25. DOI: 10.13471/j.cnki.acta.snus.ZR20240043.
包括扬子、华夏和琼西南诸多块体的华南东部保存了与哥伦比亚和罗迪尼亚超大陆聚散有关的丰富地质记录,是理解东亚前寒武纪动力学演化的关键地区。本文基于琼西南、扬子东部和华夏陆块元古代地层和岩浆记录,分析并综述了华南东部地区元古代构造过程及其在超大陆的古位置。研究表明,琼西南地块在中元古代(~1.45 Ga)时期形成于哥伦比亚超大陆内部的非造山裂谷环境,经历了~1.05 Ga的麻粒岩相高级变质作用。其与扬子西南缘关系紧密,在~1.30~1.05 Ga期间,可能作为中元古代Albany-Fraser造山带的一部分。华夏和扬子东部在新元古代早期显示差异的地质特征,两者因古华南洋而分隔。江山-绍兴缝合带以东的华夏陆块发育
ε
Hf
(
t
)值为负的~1.0~0.9 Ga长英质火山岩,与江-绍缝合带之西的扬子陆块同期具正
ε
Hf
(
t
)值的双溪坞弧迥然不同,他们很可能是响应于原高止大洋俯冲而作为早新元古代(~1.0~0.9 Ga)原华夏造山作用的地质记录
。
怀玉和江南地区广泛发育~870~830 Ma的火成岩(集中在850~830 Ma),其碎屑岩含~860~830 Ma碎屑锆石年龄峰值、~980 Ma锆石颗粒较少。相反华夏陆块较少发育同期火成岩,碎屑岩中~980 Ma碎屑锆石丰富而~860~830 Ma碎屑锆石少见。以裂谷环境为其成因性质的~820~750 Ma板溪群、沥口群和马面山群及同期火成岩广泛见于华夏和怀玉地块及江南造山带,并以角度不整合经沧水铺群和骆家门砾岩与冷家溪群及其相当岩系分割,自此使之进入相对稳定的板内沉积演化期。研究认为,新元古代早期(~1.0~0.9 Ga)在华夏内部武夷-云开一线发育了与印度Eastern Ghats造山带走向相接的增生造山带,同时在扬子与华夏陆块之间发育了新元古代古华南洋,该大洋向西持续俯冲形成了长寿命的新元古代(~0.97~0.83 Ga)华南沟-弧系统,相继形成了~0.98~0.88 Ga的双溪坞洋内弧,~0.87~0.83 Ga怀玉大陆弧及~0.87~0.83 Ga的江南陆内弧后盆地,可与罗迪尼亚超大陆外缘印度西北的新元古代德里造山带相对比。该系统内双溪坞洋内弧盆在~0.87 Ga关闭而转入~0.87~0.83 Ga的怀玉-江南安第斯型活动大陆边缘,进而于~830~810 Ma由扬子和华夏陆块沿江南造山带拼合而成古华南陆块,自810 Ma之后由于罗迪尼亚超大陆裂解及大规模后造山裂谷作用,造就了板溪群及其相当岩系和同期双峰式火成作用。
The Meso- and Neo-proterozoic geological records in eastern South China are the key carriers for understanding the Columbia and Rodinia supercontinent cycles and the geodynamic evolution of East Asia,which are yet uncertain so far. This paper presents an overview of key geological observations for the southwest Hainan,eastern Yangtze, and Cathaysia with respect to Proterozoic tectonics. Our data show that the SW Hainan in the Mesoproterozoic(~1.45 Ga)developed in a non-orogenic rift setting in the Columbia interior which was undergone by the ~1.05 Ga high-grade metamorphism. SW Hainan might be a part of the Mesoproterozoic Albany-Fraser Orogen at ~1.30-1.05 Ga,and,subsequently moved to the margin of Rodinia. Cathaysia and eastern Yangtze display distinct geological signatures in the early Neoproterozoic and Cathaysia remained separated from Yangtze until at least ~1.0 Ga,even ~0.83 Ga. The ~1.0-0.9 Ga felsic igneous rocks in Cathaysia are dominated by negative
ε
Hf
(
t
) values,and distinct from those in the coeval Shuangxiwu arc with positive
ε
Hf
(
t
)values. Such signatures might be the response to the subduction of the Proto-Ghats Ocean,herein named the Early Neoproterozoic Proto-Cathaysia Orogen. The ~870-830 Ma(mainly 850-830 Ma)igneous rocks are extensive in the Huaiyu and Jiangnan Orogen but poor in Cathaysia. The Cathaysia Neoproterozoic sedimentary rocks are signed by ~980 Ma detrital grains but dominated by ~860-830 Ma detrital zircons for the Jiangnan and Huaiyu sedimentary rocks. Banxi,Likou and Mamianshan groups and their equivalents are extensively developed in Cathaysia and Huaiyu,and the Jiangnan Orogen,respectively,and are characterized by the rift-related sedimentary rocks and bi-model igneous rocks with the formation ages of ~810-750 Ma. They are separated from the Cangshuipu and Luojiamen conglomerates across an angular unconformity or unconformably underlain by the Lengjiaxi and Xikou groups. In combination with the available data,it is proposed for a long-lived Neoproterozoic(~0.97-0.83 Ga)and westward-subducted Proto-Huanan arc-trench system signed by ~0.98-0.88 Ga Shuangxiwu intra-oceanic arc,0.87-0.83 Ga Huaiyu continental arc and 0.87-0.83 Ga Jiangnan intra-continental back-arc basin,which switched from an intra-oceanic to a continental Andean margin setting at ~0.87 Ga. Such a system lay along strike from the synchronous Eastern Ghats and South Delhi orogen at the periphery of Rodinia. Our data revealed the united proto-South China being created by the ~830-810 Ma Jiangnan orogenesis in response to the assemblage of the Yangtze with Cathaysia,which was followed by the post-orogenic rifting due to the breakup of Rodinia.
中新元古代构造格局哥伦比亚内部罗迪尼亚外缘古华南洋扬子-华夏陆块
Meso- and Neo-proterozoic geological recordsColumbia interiorRodinia peripheryLong-lived Proto-Huanan subductionYangtze-Cathaysia assemblage
丁炳华,史仁灯,支霞臣,等,2008. 江南造山带存在新元古代(~850Ma)俯冲作用:来自皖南SSZ型蛇绿岩锆石SHRIMP U-Pb年龄证据[J]. 岩石矿物学杂志,27: 375-388.
高林志,陈峻,丁孝忠,等,2011. 湘东北岳阳地区冷家溪群和板溪群凝灰岩SHRIMP 锆石U-Pb年龄: 对武陵运动的制约[J]. 地质通报,30: 1001-1008.
姜杨,赵希林,邢光福,等,2015. 扬子陆块东南缘浙江金华地区青白口纪晚期岛弧岩浆活动: 来自富铌辉长岩和高镁闪长岩锆石U-Pb年龄和地球化学证据[J]. 地质通报,34(8): 1550-1561.
南颐,1994. 粤西云开群的划分及其地质年代[J]. 广东地质,9: 1-11.
舒良树,2006. 华南前泥盆纪构造演化:从华夏地块到加里东期造山带[J]. 高校地质学报,12(4): 418-431.
舒良树,2012. 华南构造演化基本特征[J]. 地质通报,31(7): 1035-1053.
徐亚军,杜远生,黄宏伟,等,2013. 华南发现4.1 Ga的碎屑锆石[J]. 科学通报,58(3): 240-246.
BHOWMIK S K,BERNHARDT H J,DASGUPTA S,2010. Grenvillian age high-pressure upper amphibolite-granulite metamorphism in the Aravalli-Delhi Mobile Belt,Northwestern India: New evidence from monazite chemical age and its implication[J]. Precambrian Res,178: 168-184.
CAWOOD P A,WANG W,ZHAO T Y,et al,2020. Deconstructing South China and consequences for reconstructing Nuna and Rodinia[J]. Earth Sci Rev,204: 103169.
CAWOOD P A,ZHAO G C,YAO J L,et al,2018. Reconstructing South China in Phanerozoic and Precambrian supercontinents[J]. Earth Sci Rev,186: 173-194.
CHEN X,WANG X L,WANG D,et al,2018. Contrasting mantle-crust melting processes within orogenic belts: Implications from two episodes of mafic magmatism in the western segment of the Neoproterozoic Jiangnan Orogen in South China[J]. Precambrian Res,309: 123-137.
CHEN Z H,GUO K Y,DONG Y G,et al,2009. Possible Early Neoproterozoic magmatism associated with slab window in the Pingshui segment of the Jiangshan-Shaoxing suture zone: Evidence from zircon LA-ICP-MS U-Pb geochronology and geochemistry[J]. Sci China Ser D,52: 925-939.
CUI X,ZHU W B,FITZSIMONS I C W,et al,2017. A possible transition from island arc to continental arc magmatism in the eastern Jiangnan Orogen,South China: Insights from a Neoproterozoic(870-860 Ma)gabbroic-dioritic complex near the Fuchuan ophiolite[J]. Gondwana Res,46: 1-16.
GAO J,KLEMD R,LONG L L,et al,2009. Adakitic signature formed by fractional crystallization: An interpretation for the Neo-Proterozoic meta-plagiogranites of the NE Jiangxi ophiolitic mélange belt,South China[J]. Lithos,110: 277-293.
GOODGE J W,FANNING C M,FISHER C M,et al,2017. Proterozoic crustal evolution of central East Antarctica: Age and isotopic evidence from glacial igneous clasts,and links with Australia and Laurentia[J]. Precambrian Res,299: 151-176.
GOODGE J W,VERVOORT J D,2006. Origin of Mesoproterozoic A-type granites in Laurentia: Hf isotope evidence[J]. Earth Planet Sc Lett,243: 711-731.
GREENTREE M R,LI Z X,LI X H,et al,2006. Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia[J]. Precambrian Res,151: 79-100.
ZHANG H C,XU Y J,CAWOOD P A,et al,2023. Linking the Paleozoic evolution of Hainan Island to Indochina and Australia: Implication for the paleogeography of the Eastern Tethys Ocean[J]. Tectonophysics,858: 229882.
KAUR P,ZEH A,CHAUDHRI N,et al,2011. Archaean to Palaeoproterozoic crustal evolution of the Aravalli mountain range,NW India,and its hinterland: The U-Pb and Hf isotope record of detrital zircon [J]. Precambrian Res,187: 155-164.
KHAN M S,IRSHAD R,KHAN T, 2019. Geochemistry of mafic-felsic rocks of phulad ophiolite,in and around Pindwara-Mount Abu region,South Delhi Fold Belt,NW Indian Shield: Implications for its tectonic evolution[M/OL]//MONDAL M ed.Geological Evolution of the Precambrian Indian Shield.https://doi.org/10.1007/978-3-319-89698-4_17https://doi.org/10.1007/978-3-319-89698-4_17.
LI L M,LIN S F,XING G F,et al,2013a. Geochemistry and tectonic implications of Late Mesoproterozoic alkaline bimodal volcanic rocks from the Tieshajie Group in the southeastern Yangtze Block,South China[J]. Precambrian Res,230: 179-192.
LI L M,LIN S F,XING G F,et al,2013b. Geochronology and geochemistry of volcanic rocks from the Shaojiwa Formation and Xingzi Group,Lushan area,SE China: Implications for Neoproterozoic back-arc basin in the Yangtze Block[J]. Precambrian Res,238: 1-17.
LI L M,LIN S F,XING G F,et al,2018. Geochronology and geochemistry of volcanic rocks from the Jingtan Formation in the eastern Jiangnan orogen,South China: Constraints on petrogenesis and tectonic implications[J]. Precambrian Res,209: 166-180.
LI Q W,ZHAO J H,2020. Amalgamation between the Yangtze and Cathaysia blocks in South China: Evidence from the ophiolite geochemistry[J]. Precambrian Res,350: 105893.
LI W X,LI X H,LI Z X,2005. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance[J]. Precambrian Res,136: 51-66.
LI X H,LI Z X,GE W C,et al,2003. Neoproterozoic granitoids in South China: Crustal melting above a mantle plume at ca. 825 Ma?[J]. Precambrian Res,122: 45-83.
LI X H,LI Z X,LI W X,2014. Detrital zircon U-Pb age and Hf isotope constrains on the generation and reworking of Precambrian continental crust in the Cathaysia Block,South China: A synthesis[J]. Gondwana Res,25: 1202-1215.
LI X H,1998. The SHRIMP U-Pb zircon geochronology of Paleo-Proterozoic plagioclases amphibolite in the Zhejiang-Fujian area[J]. J Geochem,27(4): 327-334.
LI Y X,YIN C Q,LIN S F,et al,2021. Geochronology and geochemistry of bimodal volcanic rocks from the western Jiangnan Orogenic Belt: Petrogenesis,source nature and tectonic implication[J]. Precambrian Res,359: 106218.
LI Z X,LI X H,LI W X,et al,2008. Was Cathaysia part of Proterozoic Laurentia? New data from Hainan Island,South China[J]. Terra Nova,20: 154-164.
LI Z X,LI X H,ZHOU H W,et al,2002. Grenvillian continental collision in south China:New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia[J]. Geology,30: 163-166.
LI Z X,LIU Y,ERNST R,2023. A dynamic 2000-540 Ma Earth history: From cratonic amalgamation to the age of supercontinent cycle[J]. Earth Sci Rev,238: 104336.
LI Z X,WARTHO J A,OCCHIPINTI S,et al,2007. Early history of the eastern Sibao Orogen(South China)during the assembly of Rodinia: New mica 40Ar/39Ar dating and SHRIMP U-Pb detrital zircon provenance constraints[J]. Precambrian Res,159: 79-94.
MARTIN E L,SPENCER C J,COLLINS W J,et al,2020. The core of Rodinia formed by the juxtaposition of opposed retreating and advancing accretionary orogens[J]. Earth Sci Rev,211: 103413.
MIKHALSKY E V,HENJES-KUNST F,BELYATSKY B V,et al,2010. New Sm-Nd,Rb-Sr,U-Pb and Hf isotope systematics for the southern Prince Charles Mountains(East Antarctica)and its tectonic implications[J]. Precambrian Res,182: 101-123.
MORRISSEY L J,PAYNE J L,HAND M,et al,2017. Linking the windmill islands,East Antarctica and the Albany-Fraser Orogen: Insights from U-Pb zircon geochronology and Hf isotopes[J]. Precambrian Res,293: 131-149.
SHU L S,CHARVET J,1996. Kinematics and geochronology of the Proterozoic Dongxiang-Shexian ductile shear zone with HP metamorphism and ophiolitic melange(Jiangnan Region,South China)[J]. Tectonophysics,267: 291-302.
SHU L S,DENG P,YU J H,et al,2008. The age and tectonic environment of the rhyolitic rocks on the western side of Wuyi Mountain,South China[J]. Sci China Ser D,51: 1053-1063.
SHU L S,FAURE M,YU J H,et al,2011. Geochronological and geochemical features of the Cathaysia block(South China): New evidence for the Neoproterozoic breakup of Rodinia[J]. Precambrian Res,187: 263-276.
SHU L S,WANG J Q,YAO J L,2019. Tectonic evolution of the eastern Jiangnan region,South China: New findings and implications on the assembly of the Rodinia supercontinent[J]. Precambrian Res,322: 42-65.
SHU L S,YAO J L,WANG B,et al,2021. Neoproterozoic plate tectonic process and Phanerozoic geodynamic evolution of the South China Block[J]. Earth Sci Rev,216: 103596.
SHU L S,ZHOU G Q,SHI Y S,et al,1994. Study of the high-pressure metamorphic blueschist and its Late Proterozoic age in the Eastern Jiangnan Orogenic Belt[J]. Chinese Sci Bull,39: 1200-1204.
SUN J J,SHU L S,SANTOSH M,et al,2017. Neoproterozoic tectonic evolution of the Jiuling terrane in the central Jiangnan orogenic belt(South China): Constraints from magmatic suites[J]. Precambrian Res,302: 279-297.
SUN J J,SHU L S,SANTOSH M,et al,2018. Precambrian crustal evolution of the central Jiangnan orogenic belt(South China): Evidence from detrital zircon U-Pb ages and Hf isotopic compositions of Neoproterozoic metasedimentary rocks[J]. Precambrian Res,318: 1-24.
TIAN Y,WANG W,WANG L Z,et al,2020. Age and petrogenesis of the Yingyangguan volcanic rocks: Implications on constraining the boundary between Yangtze and Cathaysia blocks,South China [J]. Lithos,376-377: 105755.
WAN Y S,LIU D Y,XU M H,et al,2007. SHRIMP U-Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in Northwestern Fujian,Cathaysia block,China: Tectonic implications and the need to redefine lithostratigraphic units[J]. Gondwana Res,12: 166-183.
WANG G G,NI P,ZHU A D,et al,2018a. 1.01-0.98 Ga mafic intraplate magmatism and related Cu-Au mineralization in the eastern Jiangnan Orogen: Evidence from Liujia and Tieshajie basalts[J]. Precambrian Res,309: 6-21.
WANG J Q,SHU L S,SANTOSH M,2017. U-Pb and Lu-Hf isotopes of detrital zircon grains from Neoproterozoic sedimentary rocks in the central Jiangnan Orogen,South China: Implications for Precambrian crustal evolution[J]. Precambrian Res,294: 175-188.
WANG J,LI Z X,2003. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up[J]. Precambrian Res,122(1/2/3/4): 141-158.
WANG L J,GRIFFIN W L,YU J H,et al,2010a. Precambrian crustal evolution of the Yangtze Block tracked by detrital zircons from Neoproterozoic sedimentary rocks[J]. Precambrian Res,177: 131-144.
WANG W,WANG F,CHEN F K,et al,2010b. Detrital zircon ages and Hf-Nd isotopic composition of Neoproterozoic sedimentary rocks in the Yangtze Block: Constraints on the deposition age and provenance[J]. J Geol,118: 79-94.
WANG W,ZHOU M F,2014a. Provenance and tectonic setting of the Paleo- to Mesoproterozoic Dongchuan Group in the southwestern Yangtze Block,South China: Implication for the breakup of the supercontinent Columbia[J]. Tectonophysics,610: 110-127.
WANG X C,LI X H,LI W X,et al,2007a. Ca. 825 Ma komatiitic basalts in South China: First evidence for >1500 ℃ mantle melts by a Rodinian mantle plume[J]. Geology,35: 1103.
WANG X L,ZHAO G C,ZHOU J C,et al,2008. Geochronology and Hf isotopes of zircon from volcanic rocks of the Shuangqiaoshan Group,South China: Implications for the Neoproterozoic tectonic evolution of the eastern Jiangnan Orogen[J]. Gondwana Res,14: 355-367.
WANG X L,ZHOU J C,GRIFFIN W L,et al,2007b. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan Orogen: Dating the assembly of the Yangtze and Cathaysia Blocks[J]. Precambrian Res,159: 117-131.
WANG X L,ZHOU J C,WAN Y S,et al,2013a. Magmatic evolution and crustal recycling for Neoproterozoic strongly peraluminous granitoids from southern China: Hf and O isotopes in zircon[J]. Earth Planet Sc Lett,366: 71-82.
WANG X S,GAO J,KLEMD R,et al,2015. Early Neoproterozoic multiple arc-back-arc system formation during subduction-accretion processes between the Yangtze and Cathaysia blocks: New constraints from the supra-subduction zone NE Jiangxi ophiolite(South China)[J]. Lithos,236-237: 90-105.
WANG Y J,FAN W M,ZHANG G W,et al,2013b. Phanerozoic tectonics of the South China Block: Key observations and controversies[J]. Gondwana Res,23: 1273-1305.
WANG Y J,GAN C S,TAN Q L,et al,2018b. Early Neoproterozoic(∼840 Ma)slab window in South China: Key magmatic records in the Chencai Complex[J]. Precambrian Res,314: 434-451.
WANG Y J,ZHANG A M,CAWOOD P A,et al,2013c. Geochronological,geochemical and Nd-Hf-Os isotopic fingerprinting of an Early Neoproterozoic arc-back-arc system in South China and its accretionary assembly along the margin of Rodinia[J]. Precambrian Res,231: 343-371.
WANG Y J,ZHANG F F,FAN W M,et al,2010c. Tectonic setting of the South China Block in the early Paleozoic: Resolving intracontinental and ocean closure models from detrital zircon U-Pb geochronology[J]. Tectonics,29: TC6020.
WANG Y J,ZHANG Y Z,CAWOOD P A,et al,2024. Proterozoic tectonics of eastern South China: From ca.1.45 Ga rifting in the interior of Columbia to a long-lived convergent orogen at the periphery of Rodinia[J]. Earth Sci Rev,249: 104652.
WANG Y J,ZHANG Y Z,CAWOOD P A,et al,2019. Early Neoproterozoic assembly and subsequent rifting in South China: Revealed from mafic and ultramafic rocks,central Jiangnan Orogen[J]. Precambrian Res,331: 105367.
WANG Y J,ZHANG Y Z,FAN W M,et al,2014b. Early Neoproterozoic accretionary assemblage in the Cathaysia Block: Geochronological,Lu-Hf isotopic and geochemical evidence from granitoid gneisses[J]. Precambrian Res,249: 144-161.
WANG J Q,SHU L S,YU J H,et al,2017. From the Neoproterozoic mafic rock to the Silurian high-grade metamorphic rock: Evidence from zircon U-Pb geochronological,bulk-rock geochemical and mineral EPMA studies of Longyou garnet amphibolite in SE China[J]. J Asian Earth Sci,141: 7-23.
XU C,GAN C S,HIEU P T,et al,2022. Geochronology and Geochemistry of Mesoproterozoic Mafic Rocks in the Kontum Complex and Its Implication for the Columbia Reconstruction[J]. Lithosphere,2022(1): 4967935.
XU X S,O'REILLY S Y,GRIFFIN W L,et al,2007. The crust of Cathaysia: Age,assembly and reworking of two terranes[J]. Precambrian Res,158: 51-78.
XU Y J,CAWOOD P A,ZHANG H C,et al,2020. The Mesoproterozoic Baoban Complex,South China: A missing fragment of western Laurentian lithosphere[J]. Geol Soc Am Bull,132: 1404-1418.
YAN C L,SHU L S,CHEN Y,et al,2021. The construction mechanism of the Neoproterozoic S-type Sanfang-Yuanbaoshan granitic plutons in the Jiangnan Orogenic Belt,South China: Insights from geological observation,geochronology,AMS and Bouguer gravity modeling[J]. Precambrian Res,354: 106054.
YANG C,LI X H,WANG X C,et al,2015. Mid-Neoproterozoic angular unconformity in the Yangtze Block revisited: Insights from detrital zircon U-Pb age and Hf-O isotopes[J]. Precambrian Res,266: 165-178.
YANG X,WANG Y,ZHANG Y,et al,2022. Early Neoproterozoic(∼840 Ma)assemblage in South China and the southern extension of the Jiangshan-Shaoxing zone: Records from the Zhoutan and Shenshan igneous rocks in central Jiangxi[J]. Precambrian Res,371: 106573.
YANG Z Y,JIANG S Y,2019. Detrital zircons in metasedimentary rocks of Mayuan and Mamianshan Group from Cathaysia Block in northwestern Fujian Province,South China: New constraints on their formation ages and paleogeographic implication[J]. Precambrian Res,320: 13-30.
YAO J L,CAWOOD P A,SHU L S,et al,2016. An Early Neoproterozoic accretionary prism ophiolitic mélange from the western Jiangnan orogenic belt,South China[J]. J Geol,124: 587-601.
YAO J L,CAWOOD P A,SHU L S,et al,2019. Jiangnan orogen,South China: A ~970-820 Ma Rodinia margin accretionary belt[J]. Earth Sci Rev,196: 102872.
YAO J L,SHU L S,SANTOSH M,2014. Neoproterozoic arc-trench system and breakup of the South ChinaCraton: Constraints from N-MORB type and arc-related mafic rocks,and anorogenic granite in the Jiangnan orogenic belt[J]. Precambrian Res,247: 187-207.
YAO J L,SHU L S,CAWOOD P A,et al,2016. Delineating and characterizing the boundary of the Cathaysia Blockand the Jiangnan orogenic belt in South China[J]. Precambrian Res,275: 265-277.
YE M F,LI X H,LI W X,et al,2007. SHRIMP zircon U-Pb geochronological and whole-rock geochemical evidence for an Early Neoproterozoic Sibaoan magmatic arc along the southeastern margin of the Yangtze Block[J]. Gondwana Res,12: 144-156.
YIN C Q,LIN S F,DAVIS D W,et al,2013. Tectonic evolution of the southeastern margin of the Yangtze Block: Constraints from SHRIMP U-Pb and LA-ICP-MS Hf isotopic studies of zircon from the eastern Jiangnan Orogenic Belt and implications for the tectonic interpretation of South China[J]. Precambrian Res,236: 145-156.
YU J H,O'REILLY S Y,WANG L J,et al,2008. Where was South China in the Rodinia supercontinent? Evidence from U-Pb geochronology and Hf isotopes of detrital zircons[J]. Precambrian Res,164: 1-15.
YU J H,O'REILLY S Y,ZHOU M F,et al,2012. U-Pb geochronology and Hf-Nd isotopic geochemistry of the Badu Complex,Southeastern China: Implications for the Precambrian crustal evolution and paleogeography of the Cathaysia Block[J]. Precambrian Res,222-223: 424-449.
YU J H,ZHANG C H,O'REILLY S Y,et al,2018. Basement components of the Xiangshan-Yuhuashan area,South China: Defining the boundary between the Yangtze and Cathaysia Blocks[J]. Precambrian Res,309: 102-122.
ZHANG A M,WANG Y J,FAN W M,et al,2012a. Earliest Neoproterozoic(ca. 1.0 Ga)arc-back-arc basin nature along the northern Yunkai Domain of the Cathaysia Block: Geochronological and geochemical evidence from the metabasite[J]. Precambrian Res,220: 217-233.
ZHANG C L,SANTOSH M,ZOU H B,et al,2013a. The Fuchuan ophiolite in Jiangnan Orogen: Geochemistry,zircon U-Pb geochronology,Hf isotope and implications for the Neoproterozoic assembly of South China[J]. Lithos,179: 263-274.
ZHANG C L,ZOU H B,ZHU Q B,et al,2015a. Late Mesoproterozoic to Early Neoproterozoic ridge subduction along southern margin of the Jiangnan Orogen: New evidence from the Northeastern Jiangxi Ophiolite(NJO),South China[J]. Precambrian Res,268: 1-15.
ZHANG L M,WANG Y Y,QIAN X,et al,2018. Petrogenesis of Mesoproterozoic mafic rocks in Hainan(South China) and its implication on the southwest Hainan-Laurentia-Australia connection[J]. Precambrian Res,313: 119-133.
ZHANG L M,ZHANG Y Z,CUI X,et al,2019. Mesoproterozoic rift setting of SW Hainan: Evidence from the gneissic granites and metasedimentary rocks[J]. Precambrian Res,325: 69-87.
ZHANG S H,LI Z X,EVANS D A,et al,2012b. Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China[J]. Earth Planet Sc Lett,353-354: 145-155.
ZHANG Y Z,WANG Y J,GENG H Y,et al,2013b. Early Neoproterozoic(∼850 Ma)back-arc basin in the Central Jiangnan Orogen(Eastern South China): Geochronological and petrogenetic constraints from meta-basalts[J]. Precambrian Res,231: 325-342.
ZHANG Y Z,WANG Y J,ZHANG Y H,et al,2015b. Neoproterozoic assembly of the Yangtze and Cathaysia Blocks: Evidence from the Cangshuipu Group and associated rocks along the Central Jiangnan Orogen,South China[J]. Precambrian Res,269: 18-30.
ZHANG Y Z,WANG Y J,2016. Early Neoproterozoic(~840 Ma) arc magmatism: Geochronological and geochemical constraints on the metabasites in the Central Jiangnan Orogen[J]. Precambrian Res,275: 1-17.
ZHANG Y Z,WANG Y J,2020. Early Neoproterozoic continental arc system at the Central Jiangnan Orogen,South China: Geochronological and geochemical constraints on the key igneous rock-association[J]. Geol Soc Am Bull,132: 638-654.
ZHAO G C,CAWOOD P A,2012. Precambrian geology of China[J]. Precambrian Res,222-223: 13-54.
ZHAO J H,ZHOU M F,ZHENG J P,2013b. Constraints from zircon U-Pb ages,O and Hf isotopic compositions on the origin of Neoproterozoic peraluminous granitoids from the Jiangnan Fold Belt,South China[J]. Contrib Mineral Petr,166: 1505-1519.
ZHAO J H,ZHOU M F,2013a. Neoproterozoic high-Mg basalts formed by melting of ambient mantle in South China[J]. Precambrian Res,233: 193-205.
ZHENG Y F,WU R X,WU Y B,et al,2008. Rift melting of juvenile arc-derived crust: Geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen,South China[J]. Precambrian Res,163: 351-383.
ZHOU M F,YAN D P,KENNEDY A K,et al,2002. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block,South China[J]. Earth Planet Sc Lett,196: 51-67.
ZHU G L,YU J H,ZHOU X Y,et al,2019. The western boundary between the Yangtze and Cathaysia Blocks,new constraints from the Pingbian Group sediments,southwest South China Block[J]. Precambrian Res,331: 105350.
0
浏览量
29
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构