中山大学环境科学与工程学院,广东 广州 510006
黄智豪(1999生),男;研究方向:固体废弃物资源化;E-mail:huangzhh56@mail2.sysu.edu.cn
阮菊俊(1982生),男;研究方向:固体废弃物资源化;E-mail:ruanjujun@mail.sysu.edu.cn
纸质出版日期:2024-05-25,
网络出版日期:2024-04-01,
收稿日期:2024-02-23,
录用日期:2024-03-04
扫 描 看 全 文
黄智豪,巫宇森,秦保家等.退役Cu(InGa)Se2光伏层压件封装材料热解物理场模拟及温度优化[J].中山大学学报(自然科学版)(中英文),2024,63(03):154-162.
HUANG Zhihao,WU Yusen,QIN Baojia,et al.Simulation of pyrolysis physical field and temperature optimization of the encapsulating materials of decommissioned Cu(InGa)Se2 photovoltaic laminated module[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(03):154-162.
黄智豪,巫宇森,秦保家等.退役Cu(InGa)Se2光伏层压件封装材料热解物理场模拟及温度优化[J].中山大学学报(自然科学版)(中英文),2024,63(03):154-162. DOI: 10.13471/j.cnki.acta.snus.ZR20240039.
HUANG Zhihao,WU Yusen,QIN Baojia,et al.Simulation of pyrolysis physical field and temperature optimization of the encapsulating materials of decommissioned Cu(InGa)Se2 photovoltaic laminated module[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(03):154-162. DOI: 10.13471/j.cnki.acta.snus.ZR20240039.
在氮气氛围下,研究了不同热解温度时退役
<math id="M1"><mi mathvariant="normal">C</mi><mi mathvariant="normal">u</mi><mo stretchy="false">(</mo><mi mathvariant="normal">I</mi><mi mathvariant="normal">n</mi><mi mathvariant="normal">G</mi><mi mathvariant="normal">a</mi><mo stretchy="false">)</mo><mi mathvariant="normal">S</mi><msub><mrow><mi mathvariant="normal">e</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=59485172&type=
3.89466691
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=59485187&type=
16.59466553
光伏层压件封装材料的气态产物组成及各组分的生成行为。以节能降碳为控温依据,选取467 ℃为目标热解温度,并以438
o
C和497 ℃为对照温度,进行建模分析和模型验证。通过热-流复合物理场模拟,优化调整后的实际目标、对照热解温度为490、465和525 ℃。可以发现,将目标热解温度467 ℃调整至490 ℃后可将平均温度误差由57.18 ℃减小至5.76 ℃,下降约89.93%。在490、465和525 ℃温度下,当热解温度进入200 ℃以上的高温区间时,平均误差分别仅为3.62、4.72和3.29 ℃。这表明所建立的模型在高温区间内具有良好的准确性和指示作用。
The composition and formation behavior of each component of decommissioned
<math id="M2"><mi mathvariant="normal">C</mi><mi mathvariant="normal">u</mi><mo stretchy="false">(</mo><mi mathvariant="normal">I</mi><mi mathvariant="normal">n</mi><mi mathvariant="normal">G</mi><mi mathvariant="normal">a</mi><mo stretchy="false">)</mo><mi mathvariant="normal">S</mi><msub><mrow><mi mathvariant="normal">e</mi></mrow><mrow><mn mathvariant="normal">2</mn><mtext> </mtext></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=59485189&type=
4.57200003
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=59485193&type=
19.72733307
module encapsulating materials at different pyrolysis temperature under nitrogen atmosphere were studied. In order to save energy and reduce carbon emissions,467 ℃ was selected as the target pyrolysis temperature,while 438 ℃ and 497 ℃ were chosen as the control temperature. Simulation of thermal-flow compound
physical field and model verification were conducted. And the actual target pyrolysis temperature and control temperature were adjusted to 490,465 and 525 ℃. It was found that when temperature was adjusted from 467 to 490 ℃,the average temperature error of pyrolysis can be reduced from 57.18 ℃ to 5.76 ℃,which was reduced by 89.93%. At the temperature of 490,465 and 525 ℃,when the temperature is above 200 ℃,the average errors were only 3.62,4.72 and 3.29 ℃. It shows that the model has good accuracy and indicating effect in high temperature range.
退役<math id="M3"><mi mathvariant="normal">C</mi><mi mathvariant="normal">u</mi><mo stretchy="false">(</mo><mi mathvariant="normal">I</mi><mi mathvariant="normal">n</mi><mi mathvariant="normal">G</mi><mi mathvariant="normal">a</mi><mo stretchy="false">)</mo><mi mathvariant="normal">S</mi><msub><mrow><mi mathvariant="normal">e</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=59485179&type=3.89466691https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=59485180&type=16.59466553光伏层压件封装材料热解节能降碳
decommissioned <math id="M4"><mi mathvariant="normal">C</mi><mi mathvariant="normal">u</mi><mo stretchy="false">(</mo><mi mathvariant="normal">I</mi><mi mathvariant="normal">n</mi><mi mathvariant="normal">G</mi><mi mathvariant="normal">a</mi><mo stretchy="false">)</mo><mi mathvariant="normal">S</mi><msub><mrow><mi mathvariant="normal">e</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=59485213&type=4.57200003https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=59485199&type=19.30400085 photovoltaic laminated moduleencapsulating materialpyrolysisencapsulating material
褚家宝, 2009. 铜铟镓硒(CIGS)薄膜太阳能电池研究[D]. 上海: 华东师范大学.
何睿, 2009. 基于红外光谱吸收原理的二氧化碳气体检测系统的设计与实验研究[D]. 吉林: 吉林大学.
赵江英, 王刚, 2018. 废旧晶硅太阳能组件回收技术的发展现状[J]. 再生资源与循环经济, 11(6): 29-31.
BERGER W, SIMON F, WEIMANN K, et al, 2010. A novel approach for the recycling of thin film photovoltaic modules[J]. Resour Conserv Recy, 54: 711-718.
BOHLAND J, ANISIMOV I, 1997. POSSIBILITY of recycling silicon PV modules[C]//IEEE Photovolt Spec Conf.IEEE: 1173-1175.
BOMHARD E M,2020. The toxicology of gallium oxide in comparison with gallium arsenide and indium oxide[J]. Environ Toxicol Pharmacol, 80: 103437.
DENG R, CHANG N L, OUYANG Z, et al, 2019. A techno-economic review of silicon photovoltaic module recycling[J]. Renew Sustain Energy Rev, 109:532-550.
DIAS P, JAVIMCZIK S, BENEVIT M, et al, 2017. Recycling WEEE: Polymer characterization and pyrolysis study for waste of crystalline silicon photovoltaic modules[J]. Waste Manag, 60: 716-722.
DONI A, DUGHIERO F, 2012. Electrothermal heating process applied to C-Si PV recycling[J].IEEE Photovolt Spec Conf. IEEE: 757-762.
ELSHKAKI A, GRAEDELT, 2013. Dynamic analysis of the global metals flows and stocks in electricity generation technologies[J]. J Clean Prod, 59: 260-273.
ESCALONA P E, ZECCHINA A, 1987. IR-Spectroscopic investigation of ethylene oxide adsorption and polymerization on MgO[J]. J catal, 104: 299-306.
FELICIA S, JOSEF V, PETER R, et al, 2017. Response-surface fits and calibration transfer for the correction of the oxygen effect in the quantification of carbon dioxide via FTIR spectroscopy [J]. Anal Chim Acta, 972: 16-27.
FIARRELL C, OSMAN A I, ZHANG X, et al, 2019. End-of-life of silicon PV panels: A sustainable materials recovery process[J]. Waste Manag, 84: 91-101.
LI X, MA B, WANG C, et al, 2023. Recycling and recovery of spent copper-indium-gallium-diselenide (CIGS) solar cells: A review[J]. Int J Miner Metall Mater, 30: 989-1002.
LU M, RUNT J, PAINTER P, 2009. An infrared spectrocopic study of a polyester copolymer ionomer based on poly(ethylene oxide)[J]. Macromolecule, 42: 6581-6587.
MARWEDE M, BERGER W, SCHLUMMER M, et al, 2013. Recycling paths for thin-film chalcogenide photovoltaic waste-current feasible processes[J]. Renew Energy, 55: 220–229.
NASSAR N T, WILBURN D R, GOONAN T G, 2016. Byproduct metal requirements for U.S. wind and solar photovoltaic electricity generation up to the year 2040 under various clean power plan scenarios[J]. Appl Energy, 183: 1209-1226.
PAGNANELLI F, MOSCARDINI E, GRANATA G, et al, 2017. Physical and chemical treatment of end of life panels: An integrated automatic approach viable for different photovoltaic technologies[J]. Waste Manag, 59: 422-431.
PALITZSCH W, LOSER U, 2012. Economic PV waste recycling solutions -results from R&D and practice[R]. Conference Record of the IEEE Photovoltaic Specialists Conference: 628-631.
RIECH I, CASTRO-MONTALVO C, WITTERSHEIM L, et al, 2021. Experimental methodology for the separation materials in the recycling process of silicon photovoltaic panels[J]. Materials, 14(3): 581.
ŠTEPÀN P, LUDKA M, FRANTIŠEK R, 2007. Adsorption of poly(ethylene oxide)-block-polylactide copolymers on polylactide as studied by ATR-FTIR spectroscopy[J]. J Colloid Interf Sci, 308: 291-299.
WANG X, TIAN X, CHEN X, et al, 2022. A review of end-of-life crystalline silicon solar photovoltaic panel recycling technology[J]. Sol Energy Mater Sol Cells, 248:111976.
ZHOU Y, LI J, RECHBERGER H, et al, 2020. Dynamic criticality of by-products used in thin-film photovoltaic technologies by 2050[J]. J Clean Prod, 263:121599.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构