1.中山大学智能工程学院,广东 深圳 518107
2.广东省智能交通系统重点实验室,广东 广州 510006
3.深圳市城市交通规划设计研究中心股份有限公司,广东 深圳 518057
4.深圳市市政设计研究院有限公司,广东 深圳 518029
方明辉(1999年生),男;研究方向:自主式交通系统;E-mail:fangmh7@mail2.sysu.edu.cn
梁晨(1986年生),男;研究方向:自主式交通系统;E-mail:liangch1@szmedi.com.cn
纸质出版日期:2024-07-25,
网络出版日期:2024-04-01,
收稿日期:2024-01-20,
录用日期:2024-01-31
移动端阅览
方明辉,由林麟,郝迈等.自主式交通系统架构自适应演进方法[J].中山大学学报(自然科学版)(中英文),2024,63(04):115-123.
FANG Minghui,YOU Linlin,HAO Mai,et al.The adaptive evolution mechanism of autonomous transportation system architecture[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(04):115-123.
方明辉,由林麟,郝迈等.自主式交通系统架构自适应演进方法[J].中山大学学报(自然科学版)(中英文),2024,63(04):115-123. DOI: 10.13471/j.cnki.acta.snus.ZR20240030.
FANG Minghui,YOU Linlin,HAO Mai,et al.The adaptive evolution mechanism of autonomous transportation system architecture[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(04):115-123. DOI: 10.13471/j.cnki.acta.snus.ZR20240030.
基于本体技术和语义逻辑表达方法,以知识图谱的形式建立了自主式交通系统标准化知识库。进一步提出基于演进分析的架构自适应转换方案,通过推断系统在代际间的演进过程,实现具体架构随代际演进的自动转变。最后,以开源自主式交通系统知识图谱为例,评估了提出方法的可行性。相比对照方案,本文方法对高效分析系统演进以及实现架构合理自组织具有较大优势,能满足交通系统向自主化发展的需求。
This paper proposes a novel approach that utilizes ontology technology and semantic logic representation, which can construct a standardized knowledge repository in the form of a knowledge graph (KG) for autonomous transportation system (ATS). In addition, an architecture-adaptive transformation schema, to facilitate the automatic evolution of specific architectures across generations, grounded in evolutionary analysis is designed in accordance with inferring the system's evolutionary trajectory. To validate the schema, a fair and comprehensive assessment involving rational, efficient, and effective is achieved based on an open-source KG of ATS. The summarized results can, experimentally, showcase the potential of the proposed approach to meet the evolving requirements of transportation system has got, and continuously get transformed to ATS.
自主式交通系统演进分析知识图谱本体语义网
autonomous transportation systemevolution analysisknowledge graphontologysemantic web
党引弟, 宋宁宁, 2019. 动态自适应演进安全架构研究[J]. 信息技术与网络安全, 38(10): 18-23.
关积珍, 2022. 智能交通系统发展演进及其代际特征[J]. 人工智能, 9(4): 40-49.
李青山, 廉宗民, 王璐, 等, 2021. 空间飞行器控制软件的动态自适应演化方法[J]. 空间控制技术与应用, 47(2): 63-72.
裴建中, 2018. 道路工程学科前沿进展与道路交通系统的代际转换[J]. 中国公路学报, 31(11): 1.
邱凌, 张安思, 李少波, 等, 2022. 航空制造知识图谱构建研究综述[J]. 计算应用研究, 39(4):968-977.
唐进君, 庹昊南, 刘佑, 等, 2022. 基于 BERT-Bi-LSTM-CRF模型的自主式交通系统参与主体识别方法[J]. 交通信息与安全, 40(5): 80-90.
王淑营, 李雪, 黎荣, 等,2022. 基于知识图谱的高速列车知识融合方法[J]. 西南交通大学学报: 1-11.https://kns.cnki.net/kems/detail/51.1277.U.2022711.1502.002.htmlhttps://kns.cnki.net/kems/detail/51.1277.U.2022711.1502.002.html.
魏伟, 郑来, 蔡铭, 2022. 面向自主式交通的智能交通系统用户需求研究[J]. 交通科技与经济, 24(2): 1-7.
严新平, 褚端峰, 刘佳仑,等, 2021. 智能交通发展的现状, 挑战与展望[J]. 交通运输研究, 7(6): 2-10+22.
张明悦, 金芝, 赵海燕, 等, 2020. 机器学习赋能的软件自适应性综述[J]. 软件学报, 31(8): 2404-2431.
张栋豪, 刘振宇, 郏维强, 等, 2021. 知识图谱在智能制造领域的研究现状及其应用前景综述[J]. 机械工程学报, 57(5): 90-113.
赵娜, 袁家斌, 徐晗, 2014. 智能交通系统综述[J]. 计算机科学, 41(11): 7-11+45.
BENAVIDES S D, CARDOSO S D, SILVEIRA M D A, et al,2022. Dyndiff: A tool for comparing versions of large ontologies[C]//5th Workshop on Semantic Web Solutions for Large-Scale Biomedical Data Analytics.CEUR:29-30.
BUCHGEHER G, GABAUER D, MARTINEZ-GIL J, et al, 2021. Knowledge graphs in manufacturing and production: A systematic literature review[J]. IEEE Access, 9: 55537-55554.
HARTUNG M, GROSS A, RAHM E, 2013. Conto-Diff: Generation of complex evolution mappings for life science ontologies[J]. J Biomed Inform, 46(1): 15-32.
KREMEN P, SMID M, KOUBA Z, 2011. OWLDiff: A practical tool for comparison and merge of OWL ontologies[C]//22nd International Workshop on Database and Expert Systems Applications. Toulouse, France:IEEE: 229-233.
NOY N F, MUSEN M A, 2002. Promptdiff: A fixed-point algorithm for comparing ontology versions[J]. AAAI/IAAI: 744-750.
OSBORNE F, MOTTA E, 2018. Pragmatic ontology evolution: Reconciling user requirements and application performance[C]// 17th International Semantic Web Conference. Springer: 495-512.
SANTOS J S, SILVA V T, AZEVEDO L G, et al, 2020. An experimental analysis of tools for ontology evolution management[C]// 22nd International Conference on Enterprise Information Systems. SciTePress:111-121.
WILLIAMS B,2021. Automated driving levels[EB/OL]. Automated Vehicles and MassS: Removing the Barriers.https://ieeexplore.ieee.org/abstract/document/9466297https://ieeexplore.ieee.org/abstract/document/9466297.
YOU L, HE J, ZHAO J, et al, 2022a. A federated mixed logit model for personal mobility service in autonomous transportation systems[J]. Systems, 10(4): 117.
YOU L, HE J, WANG W, et al, 2022b. Autonomous transportation systems and services enabled by the next-generation network[J]. IEEE Netw, 36(3): 66-72.
ZHOU Z S, CAI M, XIONG C, et al,2022. Construction of autonomous transportation system architecture based on system engineering methodology[C]// 25th International Conference on Intelligent Transportation Systems (ITSC).Macau,China: IEEE: 3348-3353.
0
浏览量
115
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构