1.福州大学环境与安全工程学院,福建 福州 350108
2.福建省新型污染物生态毒理效应与控制重点实验室 / 生态环境及其信息图谱福建省高等学校重点实验室 / 莆田学院环境与生物工程学院,福建 莆田 351100
徐堂煊(1998年生),男;研究方向:荧光金属有机框架材料;E-mail:210627031@fzu.edu.cn
杨磊(1979年生),男;研究方向:环境功能材料;E-mail:yanglei2102023@163.com
纸质出版日期:2024-05-25,
网络出版日期:2024-03-21,
收稿日期:2024-01-08,
录用日期:2024-01-24
扫 描 看 全 文
徐堂煊,杨磊,傅丽君等.快速室温合成IRMOF-3用于检测水中的烯啶虫胺[J].中山大学学报(自然科学版)(中英文),2024,63(03):128-136.
XU Tangxuan,YANG Lei,FU Lijun,et al.Rapid room-temperature synthesis of IRMOF-3 for the detection of nitenpyram in water[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(03):128-136.
徐堂煊,杨磊,傅丽君等.快速室温合成IRMOF-3用于检测水中的烯啶虫胺[J].中山大学学报(自然科学版)(中英文),2024,63(03):128-136. DOI: 10.13471/j.cnki.acta.snus.ZR20240017.
XU Tangxuan,YANG Lei,FU Lijun,et al.Rapid room-temperature synthesis of IRMOF-3 for the detection of nitenpyram in water[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(03):128-136. DOI: 10.13471/j.cnki.acta.snus.ZR20240017.
现代农业的迅速发展离不开农药的大量使用,同时也由于农药分子的结构稳定性与高毒性作用,使其成为环境中的主要有机污染物。本研究采用简便快捷的室温合成方法制备了高荧光效率的IRMOF-3,将其应用于有毒新烟碱类杀虫剂——烯啶虫胺(NIT,nitenpyram)的荧光检测分析。结果表明:制备出的IRMOF-3为纯相晶体材料,具有在427 nm稳定的光致发光性质。IRMOF-3的蓝色荧光可被水环境中的NIT快速淬灭,在诸多干扰物中表现出了良好的选择性和强抗干扰能力。以此建立的荧光分析方法在0~38 μmol/L的NIT浓度范围内具有显著相关性,检测限(LOD)低至0.35 μmol/L,加标回收实验证明该方法有良好的回收率(95.16% ~ 106.51%)且相对标准偏差(RSD) ≤ 6.68%。对多种表征结果的分析说明荧光检测机理主要为NIT对于激发光的能量竞争吸收,而电子转移所导致的荧光淬灭也是IRMOF-3对NIT的荧光检测机理之一。综上所述,基于荧光分析法IRMOF-3实现了对水环境中NIT的高灵敏度含量检测,为未来NIT类水环境污染检测提供了一种简便可靠的分析方法。
The rapid development of modern agriculture generally relies on the massive use of pesticides, which also become the main organic pollutants in the environment due to the structural stability and high toxicity effects of pesticide molecules. In this study, IRMOF-3 with high fluorescence efficiency was prepared by a simple and rapid room-temperature synthesis method, and then applied to the fluorescence detection and analysis of the toxic neonicotinoid pesticide, nitenpyram (NIT). The results show that the prepared IRMOF-3 is a pure-phase crystalline material with stable photoluminescence at 427 nm; The blue fluorescence of IRMOF-3 can be quenched quickly by NIT in the aqueous environment, which shows a good selectivity and a strong anti-interference ability among many interferences. The fluorescence analytical method developed by this method showed a significant correlation in the concentration range of 0~38 μmol/L of NIT, and the limit of detection(LOD) was as low as 0.35 μmol/L. The spiked recoveries demonstrated that the method had good recoveries (95.16%~106.51%) with the relative standard deviations(RSDs)≤ 6.68%. The analysis of the multiple characterization results indicated that the fluorescence detection mechanism mainly refers to the energy competition absorption of NIT for the excitation light. In addition, the fluorescence quenching due to electron transfer is also one of the fluorescence detection mechanisms of IRMOF-3 for NIT. In conclusion, IRMOF-3 based on fluorescence analysis has realized the detection of NIT with high sensitivity, which provides a simple and reliable analytical method for the future detection of NIT-type pollution in water environment.
IRMOF-3烯啶虫胺荧光检测能量竞争吸收电子转移
IRMOF-3nitenpyramfluorescence detectionenergy competition absorptionelectron transfer
汪淑华, 李鹏飞, 王正仁, 等, 2013. IRMOF-3配位共价修饰化合物的固态发光性质研究 [J]. 分析测试学报, 32(6): 772-775.
杨林, 吕美婵, 2022. IRMOF-3@PAA/PVDF复合纳滤膜的制备及性能 [J]. 功能材料, 53(1): 1147-1153.
ABDELHAMEED R M, EL-NAGGAR M, TAHA M, et al, 2020. Designing a sensitive luminescent probe for organophosphorus insecticides detection based on post-synthetic modification of IRMOF-3 [J]. J Mol Struct, 1199: 127000.
ALSHEMMARI H, AL-KASBI M M, KAVIL Y N, et al, 2023. New and legacy pesticidal persistent organic pollutants in the agricultural region of the Sultanate of Oman [J]. J Hazard Mater, 459: 132205.
CHU Q Q, ZHANG B, YANG Z P, et al, 2021. Stable indium pyridylcarboxylate framework with highly selective adsorption of cationic dyes and effective nitenpyram detection [J]. Inorg Chem, 60(7): 5232-5239.
GUAN J P, HE Q, LIU Q, et al, 2023. Cu2+ assisted carnation-like fluorescent metal-organic framework for triple-mode detection of glyphosate in food samples [J]. Food Chem, 408: 135237.
JIE B R, LIN H D, ZHAI Y X, et al, 2023. Mechanism, design and application of fluorescent recognition based on metal organic frameworks in pollutant detection [J]. Chem Eng J, 454: 139931.
KAMAL S, KHALID M, KHAN M S, et al, 2023. Metal organic frameworks and their composites as effective tools for sensing environmental hazards: An up to date tale of mechanism, current trends and future prospects [J]. Coord Chem Rev, 474: 214859.
KHATUA S, GOSWAMI S, BISWAS S, et al, 2015. Stable multiresponsive luminescent MOF for colorimetric detection of small molecules in selective and reversible manner [J]. Chem Mater, 27(15): 5349-5360.
LA N T N, VAN H D, TUAN T P A, et al, 2023. Novel composites of nano-metal–organic frameworks (IRMOF-3) and silver nanoparticles for the ultra-sensitive performance of SERS sensing and optical fiber modes [J]. J Sci Adv Mater Devices, 8(3): 100584.
LI A J, CHU Q Q, ZHOU H F, et al, 2021. Effective nitenpyram detection in a dual-walled nitrogen-rich In(iii)/Tb(iii)-organic framework [J]. Inorg Chem Front, 8(9): 2341-2348.
LI D, WANG H, ZHANG X, et al, 2014. Morphology design of IRMOF-3 crystal by coordination modulation [J]. Cryst Growth Des, 14(11): 5856-5864.
LI X J, XIE S Q, HU Y Z, et al, 2021. AIEgen modulated per-functionalized flower-like IRMOF-3 frameworks with tunable light emission and excellent sensing properties [J]. Chem Commun, 57(19): 2392-2395.
LIAN X, YAN B, 2015. Multi-component luminescent lanthanide hybrids of both functionalized IRMOF-3 and SBA-15 [J]. New J Chem, 39(8): 5898-5901.
PHOGAT A, SINGH J, KUMAR V, et al, 2022. Toxicity of the acetamiprid insecticide for mammals: A review [J]. Environ Chem Lett, 20(2): 1453-1478.
RATHER R A, SIDDIQUI Z N, 2019. Sulfonic acid functionalized metal-organic framework (S-IRMOF-3): A novel catalyst for sustainable approach towards the synthesis of acrylonitriles [J]. RSC Adv, 9(28): 15749-15762.
RATHI B S, KUMAR P S, VO D V N, 2021. Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment [J]. Sci Total Environ, 797: 149134.
RAY C A, BHATTACHARYA D, SAHU S K, 2016. Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agent [J]. Dalton Trans, 45(7): 2963-2973.
ROSTAMI M, ZHANG B, ZHANG Y, 2023. Selective detection of nitenpyram by silica-supported carbon quantum dots [J]. Spectrochim Acta Part A Mol Biomol Spectrosc, 292: 122387.
SU B Y, LIAO S Y, ZHU H T, et al, 2021. Fabrication of a 2D metal-organic framework(MOF) nanosheet colloidal system and investigation of its fluorescence response to pesticide molecules [J]. Anal Methods, 13(47): 5700-5710.
WAGNER M, LIN K Y A, OH W D, et al, 2021. Metal-organic frameworks for pesticidal persistent organic pollutants detection and adsorption–A mini review [J]. J Hazard Mater, 413: 125325.
WANG J X, SUN Y Y, WANG P P, et al, 2024. A dual-emitting fluoroprobe fabricated by aloe leaf-based N-doped carbon quantum dots and copper nanoclusters for nitenpyram detection in waters by virtue of inner filter effect and static quenching principles [J]. Anal Chim Acta, 1289: 342182.
WANG W Z, YANG F, YANG Y C, et al, 2022. Rational synthesis of a stable rod MOF for ultrasensitive detection of nitenpyram and nitrofurazone in natural water systems [J]. J Agric Food Chem, 70(50): 15682-15692.
YANG J M, LIU Q, KANG Y S, et al, 2014. Controlled growth and gas sorption properties of IRMOF-3 nano/microcrystals [J]. Dalton Trans, 43(44): 16707-16712.
YANG L, LIU Y L, LIU C G, et al, 2020. A built-in self-calibrating luminescence sensor based on RhB@Zr-MOF for detection of cations, nitro explosives and pesticides [J]. RSC Adv, 10(33): 19149-19156.
YAZHINI C, RAFI J, CHAKRABORTY P, et al, 2022. Inner filter effect on amino-functionalized metal-organic framework for the selective detection of tetracycline [J]. J Clean Prod, 373: 133929.
ZHOU Q Z, WANG W Z, LIU F M, et al, 2022. Removal of difenoconazole and nitenpyram by composite calcium alginate beads during apple juice clarification [J]. Chemosphere, 286: 131813.
ZHOU X, ZHANG Y, YANG X G, et al, 2012. Functionalized IRMOF-3 as efficient heterogeneous catalyst for the synthesis of cyclic carbonates [J]. J Mol Catal A Chem, 361/362(9): 12-16.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构