图1 可用于NIT检测的IRMOF-3荧光探针制备示意图
纸质出版日期:2024-05-25,
网络出版日期:2024-03-21,
收稿日期:2024-01-08,
录用日期:2024-01-24
扫 描 看 全 文
引用本文
阅读全文PDF
现代农业的迅速发展离不开农药的大量使用,同时也由于农药分子的结构稳定性与高毒性作用,使其成为环境中的主要有机污染物。本研究采用简便快捷的室温合成方法制备了高荧光效率的IRMOF-3,将其应用于有毒新烟碱类杀虫剂——烯啶虫胺(NIT,nitenpyram)的荧光检测分析。结果表明:制备出的IRMOF-3为纯相晶体材料,具有在427 nm稳定的光致发光性质。IRMOF-3的蓝色荧光可被水环境中的NIT快速淬灭,在诸多干扰物中表现出了良好的选择性和强抗干扰能力。以此建立的荧光分析方法在0~38 μmol/L的NIT浓度范围内具有显著相关性,检测限(LOD)低至0.35 μmol/L,加标回收实验证明该方法有良好的回收率(95.16% ~ 106.51%)且相对标准偏差(RSD) ≤ 6.68%。对多种表征结果的分析说明荧光检测机理主要为NIT对于激发光的能量竞争吸收,而电子转移所导致的荧光淬灭也是IRMOF-3对NIT的荧光检测机理之一。综上所述,基于荧光分析法IRMOF-3实现了对水环境中NIT的高灵敏度含量检测,为未来NIT类水环境污染检测提供了一种简便可靠的分析方法。
The rapid development of modern agriculture generally relies on the massive use of pesticides, which also become the main organic pollutants in the environment due to the structural stability and high toxicity effects of pesticide molecules. In this study, IRMOF-3 with high fluorescence efficiency was prepared by a simple and rapid room-temperature synthesis method, and then applied to the fluorescence detection and analysis of the toxic neonicotinoid pesticide, nitenpyram (NIT). The results show that the prepared IRMOF-3 is a pure-phase crystalline material with stable photoluminescence at 427 nm; The blue fluorescence of IRMOF-3 can be quenched quickly by NIT in the aqueous environment, which shows a good selectivity and a strong anti-interference ability among many interferences. The fluorescence analytical method developed by this method showed a significant correlation in the concentration range of 0~38 μmol/L of NIT, and the limit of detection(LOD) was as low as 0.35 μmol/L. The spiked recoveries demonstrated that the method had good recoveries (95.16%~106.51%) with the relative standard deviations(RSDs)≤ 6.68%. The analysis of the multiple characterization results indicated that the fluorescence detection mechanism mainly refers to the energy competition absorption of NIT for the excitation light. In addition, the fluorescence quenching due to electron transfer is also one of the fluorescence detection mechanisms of IRMOF-3 for NIT. In conclusion, IRMOF-3 based on fluorescence analysis has realized the detection of NIT with high sensitivity, which provides a simple and reliable analytical method for the future detection of NIT-type pollution in water environment.
新烟碱类农药被广泛用于农业领域以保护农作物免受害虫侵害,这一类农药主要包括啶虫脒(acetamiprid)、呋虫胺(dinotefuran)和烯啶虫胺(NIT,nitenpyram)等。其中NIT作为第一代新烟碱类杀虫剂的代表,因具有高渗透性、强吸收性和广消杀性而被大量使用,可用于防治蓟马、白粉虱和蚜虫等害虫(
IRMOF-3作为基于配体发光的代表性LMOF具有良好的荧光量子产率,是一种三维立方多孔框架,也被称为等网状金属有机框架,由Zn4O二级结构单元(SBU)和2-氨基对苯二甲酸(NH2-BDC)连接体组成(
本研究中采用更为简便的室温反应合成荧光探针材料,避免了传统合成修饰方法的繁琐过程(
图1 可用于NIT检测的IRMOF-3荧光探针制备示意图
Fig.1 Schematic illustration for fabrication of IRMOF-3 fluorescence probe for NIT detection
2-氨基对苯二甲酸(NH2-BDC)、 葡萄糖(glucose)、尿素(urea)、L-抗坏血酸(vitamin C)、啶虫脒(acetamiprid)、草甘膦(glyphosate)、噻虫嗪(thiamethoxam)、呋虫胺(dinotefuran)、苦参碱(matrine)和烯啶虫胺(nitenpyram)均为AR级,购自于阿拉丁生化科技股份有限公司。N,N-二甲基甲酰胺(DMF)、N,N-二乙基甲酰胺、乙腈、甲醇、乙醇、乙酸乙酯、二氯甲烷、正己烷、三乙胺和各类无机盐等均为AR级,购自于国药集团化学试剂有限公司。
SU8010型号扫描电子显微镜(SEM, 日本日立公司),XFlash5040型X射线能谱仪(EDS, 德国Bruker公司),TENSOR 27傅里叶变换红外光谱仪(FT-IR,德国Bruker公司),XRD-6100型X射线衍射仪(XRD, 日本岛津制作所),SDT650型同步热分析仪(TGA, 美国Waters公司),ASAP-2460型多站式全自动比表面与孔径分析仪(BET, 美国麦克默瑞提克公司),UV-2550紫外可见分光光度计(UV-Vis, 日本岛津制作所),Cary Eclipse荧光光谱仪(FL, 美国安捷伦科技有限公司),Thermo Scientific K-Alpha X射线光电子能谱仪(XPS, 美国赛默飞世尔科技公司)。
使用室温反应法合成IRMOF-3。称取1.8 mmol的2-氨基对苯二甲酸和4 mmol的六水合硝酸锌溶解于40 mL DMF中,缓慢将15 mmol的三乙胺加入其中,室温条件下持续搅拌20 min后得到固体沉淀,再用DMF离心洗涤3次,最终在60 ℃的烘箱中干燥24 h后备用(
1.3.1 荧光性质与检测条件优化
通过紫外可见分光光度计和荧光光谱仪,对材料的最佳激发波长与发射波长、荧光来源、最佳检测pH环境和对NIT的检测响应时间进行条件优化。
1.3.2 NIT的荧光检测方法
配制不同浓度的NIT溶液(0 ~ 150 μmol/L),另外再配制相同浓度的荧光探针溶液(0.10 g/L)。将NIT溶液与荧光探针溶液混合后超声10 min。在充分反应完全后,使用荧光光谱仪在此前的优化条件下测定混合液的荧光强度(λex=328 nm,λem=427 nm)。
利用Stern-Volmer公式计算线性范围
I0I=1+KSV[M] , | (1) |
其中I0为NIT加入前荧光探针的荧光强度,I为NIT加入后荧光探针的荧光强度。M表示检测液中NIT的浓度(μmol/L)。KSV为Stern-Volmer方程常数。
NIT的最低检测限值(LOD)计算公式为
LOD=3σk , | (2) |
其中k为由
1.3.3 选择性与抗干扰性测试
配制相对于NIT溶液浓度5倍的干扰物溶液,在加入干扰物后超声10 min,分别测试对于探针的荧光淬灭程度,以此分析基于IRMOF-3荧光检测NIT的选择性。此外,在加入NIT的前提下,再加入相对于NIT的5倍浓度干扰物溶液,测定混合体系下探针的荧光淬灭程度,以此测试对于NIT检测的抗干扰性。荧光淬灭程度用I/I0表示,I/I0 = 1则表示荧光强度不变,I/I0 > 1则表示荧光增强,I/I0 < 1则表示荧光淬灭。
1.3.4 实际水样中NIT的检测
根据建立的荧光分析方法,取莆田市木兰溪农田灌溉用水、校园湖水和自来水,经过0.45 μm的滤膜过滤后加入不同用量的NIT进行加标回收实验,计算回收率。
以上使用超纯水为溶剂,实验均重复3次,激发与发射狭缝均为5 nm。
IRMOF-3的SEM图表明快速室温反应合成的IRMOF-3为表面粗糙、大小不一且不规则的块状结构,大量小颗粒晶体黏连聚集,受反应条件如时间和温度的影响(
图2 形貌表征
Fig.2 Characterization of morphology
IRMOF-3的EDS元素分析(
图3 结构表征
Fig.3 Characterization of structure
2.2.1 荧光性质
为了分析IRMOF-3的荧光来源,测试了组分的紫外-可见吸收光谱与荧光光谱。
图4 荧光性质表征
Fig.4 Characterization of fluorescence properties
2.2.2 检测条件优化
为了提高检测的灵敏度,对IRMOF-3的检测pH环境、溶剂环境和响应时间进行了优化。如
图5 检测条件优化
Fig.5 Optimization of detection conditions
2.2.3 荧光滴定
在对检测条件优化后进行了荧光滴定实验,结果见
图6 荧光检测实验
Fig.6 Fluorescence detection experiments
荧光探针 | 检出限 | 线性范围 | 参考文献 |
---|---|---|---|
N-CQDs@SiO2 | 5.65 | 0~1 108 |
|
Zn-CPTA | 0.62 | 0~40 |
|
In-MOF | 4.25 | 10~50 |
|
In/Tb-MOF | 0.63 | 0~80 |
|
MOF-S1 | 0.44 | 0~200 |
|
IRMOF-3 | 0.35 | 0~38 | 本研究 |
通过XRD、FT-IR、紫外吸收光谱以及XPS来分析IRMOF-3对于NIT的荧光淬灭机理(
图7 检测机理表征
Fig.7 Characterization of detection mechanisms
采用加标回收方法,评价本检测方法在实际应用中的可行性,结果如
样品 | 加入量 /(μmol‧L-1) | 检测量/(μmol‧L-1) | 回收率/% | 相对标准偏差/% |
---|---|---|---|---|
灌溉用水 | 0 | 0 | - | 2.19 |
0.5 | 0.52 | 103.37 | 4.98 | |
1 | 0.95 | 95.16 | 2.09 | |
10 | 9.58 | 95.78 | 4.76 | |
20 | 21.01 | 105.04 | 5.72 | |
30 | 30.98 | 103.28 | 4.05 | |
湖水 | 0 | 0 | - | 3.25 |
0.5 | 0.48 | 95.44 | 3.61 | |
1 | 0.99 | 98.50 | 4.96 | |
10 | 10.13 | 101.31 | 6.51 | |
20 | 20.24 | 101.19 | 6.68 | |
30 | 31.36 | 104.52 | 4.36 | |
自来水 | 0 | 0 | - | 0.73 |
0.5 | 0.53 | 106.27 | 4.54 | |
1 | 0.97 | 97.05 | 1.76 | |
10 | 9.86 | 98.64 | 4.51 | |
20 | 21.30 | 106.51 | 3.12 | |
30 | 30.29 | 100.96 | 3.35 |
1) “-”表示未加标。
相对于耗时复杂的常规分析方法,荧光分析法选择性好、干扰少和灵敏度高等特点使其具备优势。传统有机发光分子作为主要的荧光探针由于自身的潜在生理毒性,应用于水质分析则可能产生二次污染,而有机-无机混杂的荧光探针材料则可通过离心分离、过滤和磁性吸附等手段从水体中去除,避免了这一问题。但有机-无机混杂类荧光探针材料的复杂制备技术阻碍了其进一步应用,对更加简便快捷的合成方法进行探究具有重要意义,同时经济适用性也是投入应用所需要考虑的关键问题,研究绿色合成制备技术和可循环使用性将赋予其更多的经济利用价值。在本研究中采用了无耗能的室温反应法制备IRMOF-3,具有良好的结晶性和高荧光效率。基于激发光能量的竞争吸收以及电子转移效应的荧光检测机理,实现了IRMOF-3对于NIT的荧光定量分析,具有快速响应性、低检测限和强抗干扰能力等优点。在对模拟水样的样品加标回收实验中也表明具备实际应用能力,可作为NIT类农药污染水体定量分析的一种可靠方法。
汪淑华, 李鹏飞, 王正仁, 等, 2013. IRMOF-3配位共价修饰化合物的固态发光性质研究 [J]. 分析测试学报, 32(6): 772-775. [百度学术]
杨林, 吕美婵, 2022. IRMOF-3@PAA/PVDF复合纳滤膜的制备及性能 [J]. 功能材料, 53(1): 1147-1153. [百度学术]
ABDELHAMEED R M, EL-NAGGAR M, TAHA M, et al, 2020. Designing a sensitive luminescent probe for organophosphorus insecticides detection based on post-synthetic modification of IRMOF-3 [J]. J Mol Struct, 1199: 127000. [百度学术]
ALSHEMMARI H, AL-KASBI M M, KAVIL Y N, et al, 2023. New and legacy pesticidal persistent organic pollutants in the agricultural region of the Sultanate of Oman [J]. J Hazard Mater, 459: 132205. [百度学术]
CHU Q Q, ZHANG B, YANG Z P, et al, 2021. Stable indium pyridylcarboxylate framework with highly selective adsorption of cationic dyes and effective nitenpyram detection [J]. Inorg Chem, 60(7): 5232-5239. [百度学术]
GUAN J P, HE Q, LIU Q, et al, 2023. Cu2+ assisted carnation-like fluorescent metal-organic framework for triple-mode detection of glyphosate in food samples [J]. Food Chem, 408: 135237. [百度学术]
JIE B R, LIN H D, ZHAI Y X, et al, 2023. Mechanism, design and application of fluorescent recognition based on metal organic frameworks in pollutant detection [J]. Chem Eng J, 454: 139931. [百度学术]
KAMAL S, KHALID M, KHAN M S, et al, 2023. Metal organic frameworks and their composites as effective tools for sensing environmental hazards: An up to date tale of mechanism, current trends and future prospects [J]. Coord Chem Rev, 474: 214859. [百度学术]
KHATUA S, GOSWAMI S, BISWAS S, et al, 2015. Stable multiresponsive luminescent MOF for colorimetric detection of small molecules in selective and reversible manner [J]. Chem Mater, 27(15): 5349-5360. [百度学术]
LA N T N, VAN H D, TUAN T P A, et al, 2023. Novel composites of nano-metal–organic frameworks (IRMOF-3) and silver nanoparticles for the ultra-sensitive performance of SERS sensing and optical fiber modes [J]. J Sci Adv Mater Devices, 8(3): 100584. [百度学术]
LI A J, CHU Q Q, ZHOU H F, et al, 2021. Effective nitenpyram detection in a dual-walled nitrogen-rich In(iii)/Tb(iii)-organic framework [J]. Inorg Chem Front, 8(9): 2341-2348. [百度学术]
LI D, WANG H, ZHANG X, et al, 2014. Morphology design of IRMOF-3 crystal by coordination modulation [J]. Cryst Growth Des, 14(11): 5856-5864. [百度学术]
LI X J, XIE S Q, HU Y Z, et al, 2021. AIEgen modulated per-functionalized flower-like IRMOF-3 frameworks with tunable light emission and excellent sensing properties [J]. Chem Commun, 57(19): 2392-2395. [百度学术]
LIAN X, YAN B, 2015. Multi-component luminescent lanthanide hybrids of both functionalized IRMOF-3 and SBA-15 [J]. New J Chem, 39(8): 5898-5901. [百度学术]
PHOGAT A, SINGH J, KUMAR V, et al, 2022. Toxicity of the acetamiprid insecticide for mammals: A review [J]. Environ Chem Lett, 20(2): 1453-1478. [百度学术]
RATHER R A, SIDDIQUI Z N, 2019. Sulfonic acid functionalized metal-organic framework (S-IRMOF-3): A novel catalyst for sustainable approach towards the synthesis of acrylonitriles [J]. RSC Adv, 9(28): 15749-15762. [百度学术]
RATHI B S, KUMAR P S, VO D V N, 2021. Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment [J]. Sci Total Environ, 797: 149134. [百度学术]
RAY C A, BHATTACHARYA D, SAHU S K, 2016. Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agent [J]. Dalton Trans, 45(7): 2963-2973. [百度学术]
ROSTAMI M, ZHANG B, ZHANG Y, 2023. Selective detection of nitenpyram by silica-supported carbon quantum dots [J]. Spectrochim Acta Part A Mol Biomol Spectrosc, 292: 122387. [百度学术]
SU B Y, LIAO S Y, ZHU H T, et al, 2021. Fabrication of a 2D metal-organic framework(MOF) nanosheet colloidal system and investigation of its fluorescence response to pesticide molecules [J]. Anal Methods, 13(47): 5700-5710. [百度学术]
WAGNER M, LIN K Y A, OH W D, et al, 2021. Metal-organic frameworks for pesticidal persistent organic pollutants detection and adsorption–A mini review [J]. J Hazard Mater, 413: 125325. [百度学术]
WANG J X, SUN Y Y, WANG P P, et al, 2024. A dual-emitting fluoroprobe fabricated by aloe leaf-based N-doped carbon quantum dots and copper nanoclusters for nitenpyram detection in waters by virtue of inner filter effect and static quenching principles [J]. Anal Chim Acta, 1289: 342182. [百度学术]
WANG W Z, YANG F, YANG Y C, et al, 2022. Rational synthesis of a stable rod MOF for ultrasensitive detection of nitenpyram and nitrofurazone in natural water systems [J]. J Agric Food Chem, 70(50): 15682-15692. [百度学术]
YANG J M, LIU Q, KANG Y S, et al, 2014. Controlled growth and gas sorption properties of IRMOF-3 nano/microcrystals [J]. Dalton Trans, 43(44): 16707-16712. [百度学术]
YANG L, LIU Y L, LIU C G, et al, 2020. A built-in self-calibrating luminescence sensor based on RhB@Zr-MOF for detection of cations, nitro explosives and pesticides [J]. RSC Adv, 10(33): 19149-19156. [百度学术]
YAZHINI C, RAFI J, CHAKRABORTY P, et al, 2022. Inner filter effect on amino-functionalized metal-organic framework for the selective detection of tetracycline [J]. J Clean Prod, 373: 133929. [百度学术]
ZHOU Q Z, WANG W Z, LIU F M, et al, 2022. Removal of difenoconazole and nitenpyram by composite calcium alginate beads during apple juice clarification [J]. Chemosphere, 286: 131813. [百度学术]
ZHOU X, ZHANG Y, YANG X G, et al, 2012. Functionalized IRMOF-3 as efficient heterogeneous catalyst for the synthesis of cyclic carbonates [J]. J Mol Catal A Chem, 361/362(9): 12-16. [百度学术]
104
浏览量
196
下载量
0
CSCD
相关文章
相关作者
相关机构