1.中山大学土木工程学院,广东 珠海 519082
2.隧道工程灾变防控与智能建养全国重点实验室,广东 广州 510275
3.珠海市轨道交通有限公司,广东 珠海 519100
4.中铁隧道局集团有限公司大盾构工程分公司,河南 郑州 450007
卫俊杰(2000年生),男;研究方向:宏细观土力学;E-mail:weijj8@mail2.sysu.edu.cn
胡正(1991年生),男;研究方向:宏细观土力学;E-mail:huzheng6@mail.sysu.edu.cn
纸质出版日期:2024-07-25,
网络出版日期:2024-04-10,
收稿日期:2024-01-06,
录用日期:2024-03-05
移动端阅览
卫俊杰,凌飞,陈玉林等.珠海富水软土小应变硬化参数试验研究[J].中山大学学报(自然科学版)(中英文),2024,63(04):132-140.
WEI Junjie,LING Fei,CHEN Yulin,et al.Experimental study on parameters of small strain hardening model of Zhuhai soft soil with high water content[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(04):132-140.
卫俊杰,凌飞,陈玉林等.珠海富水软土小应变硬化参数试验研究[J].中山大学学报(自然科学版)(中英文),2024,63(04):132-140. DOI: 10.13471/j.cnki.acta.snus.ZR20240012.
WEI Junjie,LING Fei,CHEN Yulin,et al.Experimental study on parameters of small strain hardening model of Zhuhai soft soil with high water content[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(04):132-140. DOI: 10.13471/j.cnki.acta.snus.ZR20240012.
基于三轴排水、标准固结等室内试验,并结合经验方程,标定了珠海富水土体的成套HSS模型参数,并分析了主要强度参数
<math id="M1"><msubsup><mrow><mi>E</mi></mrow><mrow><mn mathvariant="normal">50</mn></mrow><mrow><mi mathvariant="normal">r</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">f</mi></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638418&type=
3.47133350
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638420&type=
3.97933316
、
<math id="M2"><msubsup><mrow><mi>E</mi></mrow><mrow><mi mathvariant="normal">o</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">d</mi></mrow><mrow><mi mathvariant="normal">r</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">f</mi></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638401&type=
3.47133350
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638403&type=
4.57200003
、
<math id="M3"><msubsup><mrow><mi>G</mi></mrow><mrow><mn mathvariant="normal">0</mn></mrow><mrow><mi mathvariant="normal">r</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">f</mi></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638422&type=
3.47133350
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638405&type=
4.14866638
和
<math id="M4"><msubsup><mrow><mi>E</mi></mrow><mrow><mi mathvariant="normal">u</mi><mi mathvariant="normal">r</mi></mrow><mrow><mi mathvariant="normal">r</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">f</mi></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638407&type=
3.47133350
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638408&type=
3.97933316
的比例关系,为珠海地区不同土层的HSS模型参数取值及计算提供参考。研究发现,珠海地区黏土的小应变参考剪切模量
<math id="M5"><msubsup><mrow><mi>G</mi></mrow><mrow><mn mathvariant="normal">0</mn></mrow><mrow><mi mathvariant="normal">r</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">f</mi></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638410&type=
3.47133350
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638411&type=
4.14866638
高于砂土,且远高于淤泥质黏土。与长三角等滨海地区相比,珠海地区的黏土因含水率较高,其参考割线模量
<math id="M6"><msubsup><mrow><mi>E</mi></mrow><mrow><mn mathvariant="normal">50</mn></mrow><mrow><mi mathvariant="normal">r</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">f</mi></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638426&type=
3.47133350
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638428&type=
3.97933316
,参考加卸载模量
<math id="M7"><msubsup><mrow><mi>E</mi></mrow><mrow><mi mathvariant="normal">u</mi><mi mathvariant="normal">r</mi></mrow><mrow><mi mathvariant="normal">r</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">f</mi></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638430&type=
3.47133350
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638431&type=
3.97933316
,参考切线模量
<math id="M8"><msubsup><mrow><mi>E</mi></mrow><mrow><mi mathvariant="normal">o</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">d</mi></mrow><mrow><mi mathvariant="normal">r</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">f</mi></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638433&type=
3.47133350
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638443&type=
4.57200003
和参考剪切模量
<math id="M9"><msubsup><mrow><mi>G</mi></mrow><mrow><mn mathvariant="normal">0</mn></mrow><mrow><mi mathvariant="normal">r</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">f</mi></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638445&type=
3.47133350
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638447&type=
4.14866638
均较低。
This study completed a series of laboratory tests to obtain all HSS model parameters of water-rich soft soil in Zhuhai area, and analyzed the proportional relationship between the modulus of key parameters
<math id="M10"><msubsup><mrow><mi>E</mi></mrow><mrow><mn mathvariant="normal">50</mn></mrow><mrow><mi mathvariant="normal">r</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">f</mi></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638449&type=
3.47133350
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638437&type=
3.97933316
<math id="M11"><msubsup><mrow><mi>E</mi></mrow><mrow><mi mathvariant="normal">o</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">d</mi></mrow><mrow><mi mathvariant="normal">r</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">f</mi></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638451&type=
3.47133350
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638440&type=
4.57200003
<math id="M12"><msubsup><mrow><mi>G</mi></mrow><mrow><mn mathvariant="normal">0</mn></mrow><mrow><mi mathvariant="normal">r</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">f</mi></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638442&type=
3.47133350
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638452&type=
4.14866638
and
<math id="M13"><msubsup><mrow><mi>E</mi></mrow><mrow><mi mathvariant="normal">u</mi><mi mathvariant="normal">r</mi></mrow><mrow><mi mathvariant="normal">r</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">f</mi></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638459&type=
3.47133350
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638454&type=
3.97933316
, providing an important supplement to the HSS model parameters of different soil layers in Zhuhai area. Compared with the results in the literature, it is found that the small strain reference shear modulus
<math id="M14"><msubsup><mrow><mi>G</mi></mrow><mrow><mn mathvariant="normal">0</mn></mrow><mrow><mi mathvariant="normal">r</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">f</mi></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638456&type=
3.47133350
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638473&type=
4.14866638
of the clay in Zhuhai area is higher than that of the sand. Compared with other coastal areas such as the Yangtze River Delta
the water content of Zhuhai clay is higher
and its reference secant modulus
<math id="M15"><msubsup><mrow><mi>E</mi></mrow><mrow><mn mathvariant="normal">50</mn></mrow><mrow><mi mathvariant="normal">r</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">f</mi></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638460&type=
3.47133350
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638463&type=
3.97933316
reference loading and unloading modulus
<math id="M16"><msubsup><mrow><mi>E</mi></mrow><mrow><mi mathvariant="normal">u</mi><mi mathvariant="normal">r</mi></mrow><mrow><mi mathvariant="normal">r</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">f</mi></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638465&type=
3.47133350
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638467&type=
3.97933316
reference tangent modulus
<math id="M17"><msubsup><mrow><mi>E</mi></mrow><mrow><mi mathvariant="normal">o</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">d</mi></mrow><mrow><mi mathvariant="normal">r</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">f</mi></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638476&type=
3.47133350
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638470&type=
4.57200003
and reference shear modulus
<math id="M18"><msubsup><mrow><mi>G</mi></mrow><mrow><mn mathvariant="normal">0</mn></mrow><mrow><mi mathvariant="normal">r</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">f</mi></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638478&type=
3.47133350
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638489&type=
4.14866638
are lower.
富水软土HSS模型参数分析试验
soft soil with high water contentHSS modelparameters analysistests
董鑫, 周峰, 王旭东, 等, 2023. 基坑数值分析中HSS 模型参数试验及应用[J]. 科学技术与工程, 23(18): 7878-7885.
顾晓强, 吴瑞拓, 梁发云,等, 2021. 上海土体小应变硬化模型整套参数取值方法及工程验证[J]. 岩土力学, 42(3): 833-845.
管飞, 2010. 基于HSS本构模型的软土超大型深基坑3D数值分析[J]. 岩土工程学报, 32(S1): 177-180.
贾晶玺, 于奎, 黄勇,等, 2022. 基于小应变土体硬化模型的水工隧洞围岩稳定性研究[J]. 河南科学, 40(7): 1108-1114.
李栋, 吴宏生, 李学,等, 2023. 珠海软土HSS 模型参数试验研究[J]. 中山大学学报(自然科学版中英文), 62(2): 137-145.
梁发云, 贾亚杰, 丁钰津,等, 2017. 上海地区软土HSS 模型参数的试验研究[J]. 岩土工程学报,39(2): 269-278.
刘松玉, 2020. 土力学(第五版)[M].北京:中国建筑工业出版社.
罗敏敏, 陈赟, 周江, 2021. 小应变土体硬化模型参数取值研究现状与展望[J]. 工业建筑, 51(4): 172-180.
王海波, 徐明, 宋二祥, 2011. 基于硬化土模型的小应变本构模型研究[J]. 岩石力学, 32(1): 39-43.
徐中华, 王建华, 王卫东, 2006. 主体地下结构与支护结构相结合的复杂深基坑分析[J]. 岩土工程学报, 28(S1): 1355-1359.
袁聚云, 陈玺元, 顾晓强,等, 2022. 广东阳江海洋砂性土小应变硬化土模型参数的试验研究[J]. 同济大学学报(自然科学版), 6: 852-860.
BENZ T, 2007. Small strain stiffness of soils and its numerical consequences[D]. Stuttgart: University of Stuttguart.
BOLTON M D, 1983. The strength and dilatancy of sands[J]. Géotechnique, 37(2): 219–226.
BRINKGREVE R B J, BROERE W, 2006. Plaxis material models manual[D]. Technische Universiteit Delft.
BURLAND J B, 1989. “Small is beautiful”—The stiffness of soils at small strains[J]. Can Geotech J, 26(4): 499-516.
GAO D Z, HUZ X, WEI D D, 1986. Geotechnical properties of Shanghai soils and engineering applications[M].ASTM International, 923: 161-177.
HARDIN B O, DRNEVICH V P, 1972. Shear modulus and damping in soils: Design equations and curves[J]. J Soil Mech Found Div, 98(7): 667-692.
HEYMAM J,1972. Coulomb’s memoir on statics: An essay in the history of civil engineering[M]. London: Imperial College Press.
JANBU J. 1963. Soil compressibility as determined by oedometer and triaxial tests[C]//Proceedings of the 3rd European Conference on Soil Mechanics and Foundation Engineering, 1:19-25.
ROSCOE K H, SCHOFIELD A N, TUHRAIRAJAH A, 1963. Yielding of clays in states wetter than critical[J]. Géotechnique, 13(3): 211-240.
SCHANZ T, VERMEER P A, 1998. On the stiffness of sands[M].Thomas Telford Publishing, 383-387.
SCHANZ T, VERMEER P A, BONNIER P G, 1999. The hardening soil model: Formulation and verification[C]//Beyond 2000 in Computional Geotechnics. Amsterdam:281-296.
0
浏览量
45
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构