1.广东省流域水环境治理与水生态修复重点实验室 / 广东工业大学生态环境与资源学院, 广东 广州 510006
2.化学与精细化工广东省实验室揭阳分中心,广东 揭阳 515200
3.广东工业大学碳中和与绿色发展协同创新研究院,广东 广州 510006
4.水产动物疫病防控与健康养殖全国重点实验室 / 中山大学生命科学学院,广东 广州 510275
袁雪婷(1999生),女;研究方向:海洋蓝碳、水处理理论与技术;E-mail:2112124024@mail2.gdut.edu.cn
罗丽娟(1984生),女;研究方向:海洋蓝碳、新污染物降解;E-mail:luolij3@gdut.edu.cn
纸质出版日期:2024-05-25,
网络出版日期:2024-03-20,
收稿日期:2024-01-03,
录用日期:2024-01-24
扫 描 看 全 文
袁雪婷,罗丽娟,曾雪兰等.基于全生命周期碳排放的海水贝藻养殖碳汇核算[J].中山大学学报(自然科学版)(中英文),2024,63(03):80-87.
YUAN Xueting,LUO Lijuan,ZENG Xuelan,et al.Carbon sink assessment of bivalve and seaweed mariculture based on life-cycle carbon emissions: A case study of Zhanjiang City, Guangdong Province[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(03):80-87.
袁雪婷,罗丽娟,曾雪兰等.基于全生命周期碳排放的海水贝藻养殖碳汇核算[J].中山大学学报(自然科学版)(中英文),2024,63(03):80-87. DOI: 10.13471/j.cnki.acta.snus.ZR20240007.
YUAN Xueting,LUO Lijuan,ZENG Xuelan,et al.Carbon sink assessment of bivalve and seaweed mariculture based on life-cycle carbon emissions: A case study of Zhanjiang City, Guangdong Province[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(03):80-87. DOI: 10.13471/j.cnki.acta.snus.ZR20240007.
湛江市的海水养殖面积3.7万hm
2
,是广东省乃至全国重要的水产品生产和加工基地,对其进行海水贝藻养殖碳汇核算,为湛江市未来开展渔业碳汇交易,服务国家碳中和需求提供数据支持具有重要意义。本研究依据实地调查以及实验室分析检测获得湛江市本土贝藻碳汇核算的关键性基础数据,并基于贝藻类全生命周期碳排放,精准评估湛江市海水贝藻养殖碳汇能力。研究结果表明,2021年湛江市海水养殖贝藻碳汇总量(以CO
2
计)为155 436 t,其中贝类155 359 t,藻类77 t。按照我国目前蓝碳交易市场中CO
2
交易价格,湛江市贝类和藻类碳汇创造的经济价值为1 648万元。综合贝藻类全生命周期碳排放的方法,湛江市贝类净碳汇为135 176 t,藻类为39 t。由此可见,湛江市具有较高的海水贝藻养殖碳汇能力,能带来可观的减排经济效益,为我国实现气候变化的解决方案以及完成“双碳”目标做出重要贡献。
Zhanjiang City, with an area of 37 000 hm
2
of mariculture, is an important production and processing base for aquatic products in Guangdong Province and even in the whole country. Conducting carbon sink accounting for mariculture bivalve and seaweed is of great significance, as it will provide data support for Zhanjiang City to conduct fishery carbon sink trading in the future and meet the national carbon neutral demand. Based on the field surveys and laboratory analysis, the key basic data of carbon sink accounting of native bivalve a
nd seaweed in Zhanjiang was obtained in this study. And the carbon sink capacity of mariculture in Zhanjiang based on the whole life cycle carbon emissions of bivalve and seaweed were also evaluated. The results showed that the total carbon sink (measured in CO
2
) of mariculture bivalve and seaweed in Zhanjiang was 155 436 t in 2021, with bivalve accounting for 155 359 t and seaweed accounting for 77 t. According to the current CO
2
trading price in China's blue carbon market, the economic value created by the carbon sinks of bivalve and seaweed in Zhanjiang was 16.48 million RMB. Using the comprehensive method of carbon emission in the whole life cycle assessment, the net carbon sink of the bivalve in Zhanjiang City was 135 176 t, and the seaweed was 39 t. It is evident that Zhanjiang City has a high carbon sequestration capacity in marine bivalve cultivation, which can bring significant economic benefits through emission reduction, and making an important contribution to China's climate change solutions and achieving the "dual carbon" goals.
蓝碳碳汇生命周期评价双壳贝类碳足迹
blue carboncarbon sinklife-cycle assessmentbivalvecarbon footprint
关洪军, 陈玉环, 赵爱武, 2023. 中国海洋渔业碳中和能力评估[J]. 中国农业科技导报, 25(4): 215-224.
胡忠健, 2023. 温州碳汇渔业现状及升级措施建议[J]. 新农村, 3: 15-16.
李强, 张云霞, 2023. 辽宁省海洋渔业现状与高质量发展对策研究[J]. 中国渔业经济, 41(2):82-89.
邵桂兰, 刘冰, 李晨, 2019. 我国主要海域海水养殖碳汇能力评估及其影响效应——基于我国9个沿海省份面板数据[J]. 生态学报, 39(7): 2614-2625.
孙威, 张继红, 吴文广, 等, 2022. 基于生命周期法的养殖海带的碳足迹评估[J]. 渔业科学进展, 43(5): 16-23.
唐启升, 刘慧, 2016. 海洋渔业碳汇及其扩增战略[J]. 中国工程科学, 18(3): 68-73.
汪文正, 2023. “蓝碳”经济成为新“蓝海”[N]. 人民日报(海外版), 2023-04-05(11).
肖乐, 刘禹松, 2010. 碳汇渔业对发展低碳经济具有重要和实际意义 碳汇渔业将成为新一轮渔业发展的驱动力——专访中国科学技术协会副主席、中国工程院院士唐启升[J]. 中国水产, 8: 4-8.
谢宇阳, 苏洁, 邵魁双, 等, 2023. 海洋渔业碳汇计量与评估方法研究进展[J]. 河北渔业, 354(6): 39-46.
颜铭呈, 2014. 牡蛎养殖之碳足迹估算-以七股牡蛎养殖为例[D]. 台南: 成功大学.
叶旺旺, 张麋鸣, 孙恒, 等, 2022. 贝藻类养殖碳汇核算与综合温室潜力评估研究进展[J]. 应用海洋学学报, 41(4): 715-723.
于佐安, 谢玺, 朱守维, 等, 2020. 辽宁省海水养殖贝藻类碳汇能力评估[J]. 大连海洋大学学报, 35(3): 382-386.
岳冬冬, 王鲁民, 2012. 中国海水贝类养殖碳汇核算体系初探[J]. 湖南农业科学, (15): 120-122+130.
张继红, 方建光, 唐启升, 2005. 中国浅海贝藻养殖对海洋碳循环的贡献[J]. 地球科学进展, 20(3): 359-365.
AHMED N, BUNTING S W, GLASER M, et al, 2017. Can greening of aquaculture sequester blue carbon?[J]. Ambio, 46(4): 468-477.
BURMAN N W, CROFT J, ENGELBRECHT S, et al, 2018. Review: Life-cycle assessment, water footprinting, and carbon footprinting in Portugal[J]. Int J Life Cycle Assess, 23(8): 1693-1700.
CLUNE S, CROSSIN E, VERGHESE K, 2017. Systematic review of greenhouse gas emissions for different fresh food categories[J]. J Clean Prod, 140: 766-783.
DAHL M, BJÖRK M, GULLSTRÖM M, 2021. Effects of seagrass overgrazing on sediment erosion and carbon sink capacity: Current understanding and future priorities[J]. Limnol Oceanogr Lett, 6(6): 309-319.
FAKHRAINI M S, WISNU W, KHATHIR R, et al, 2020. Carbon sequestration in macroalgae Kappaphycus striatum in seaweed aquaculture site, Alaang village, Alor Island, East Nusa Tenggara[J]. IOP Conf Ser: Earth Environ Sci, 404(1): 012044.
HENRIKSSON P J G, GUINÉE J B, KLEIJN R, et al, 2012. Life cycle assessment of aquaculture systems:A review of methodologies[J]. Int J Life Cycle Assess, 17(3): 304-313.
ISO, 2006a. Environmental management: Life-cycle assessment: Principles and framework: ISO 14040[S]. Geneva:[s.n.].
ISO, 2006b. Environmental management: Life cycle assessment: Requirements and guidelines: ISO 14044[S].Geneva:[s.n.].
KRAUSE-JENSEN D, DUARTE C M, 2016. Substantial role of macroalgae in marine carbon sequestration[J]. Nat Geosci, 9: 737-742.
KUWAE T, WATANABE A, YOSHIHARA S, et al, 2022. Implementation of blue carbon offset crediting for seagrass meadows, macroalgal beds, and macroalgae farming in Japan[J]. Mar Policy, 138: 104996.
MACREADIE P I, ANTON A, RAVEN J A, et al, 2019. The future of Blue Carbon science[J]. Nat Commun, 10: 3998.
PESSARRODONA A, MOORE P J, SAYER M D J, et al, 2018. Carbon assimilation and transfer through kelp forests in the NE Atlantic is diminished under a warmer ocean climate[J]. Glob Chang Biol, 24(9): 4386-4398.
RAY N E, O’MEARA T, WILIAMSON T, et al, 2018. Consideration of carbon dioxide release during shell production in LCA of bivalves[J]. Int J Life Cycle Assess, 23(5): 1042-1048.
SHARMA D, BISWAS H, BANDYOPADHYAY D, 2022. Simulated ocean acidification altered community composition and growth of a coastal phytoplankton assemblage (South West coast of India, eastern Arabian Sea)[J]. Environ Sci Pollut Res, 29(13): 19244-19261.
SIIKAMÄKI J, SANCHIRICO J N, JARDINE S, et al, 2013. Blue carbon: Coastal ecosystems, their carbon storage, and potential for reducing emissions[J]. Environ Sci Policy Sustain Dev, 55(6): 14-29.
TAMBURINI E, PEDRINI P, MARCHETTI M, et al, 2015. Life cycle based evaluation of environmental and economic impacts of agricultural productions in the Mediterranean area[J]. Sustainability, 7(3): 2915-2935.
TAMBURINI E, TUROLLA E, LANZONI M, et al, 2022. Manila clam and Mediterranean mussel aquaculture is sustainable and a net carbon sink[J]. Sci Total Environ, 848: 157508.
YONG W T L, THIEN V Y, RUPERT R, et al, 2022. Seaweed: A potential climate change solution[J]. Renew Sustain Energy Rev, 159: 112222.
0
浏览量
5
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构