1.西北民族大学化工学院, 甘肃 兰州 730030
2.甘肃省高校环境友好复合材料及生物质利用省级重点实验室, 甘肃 兰州 730030
[ "XIAN Liang(lxian@xbmu.edu.cn)" ]
TIAN Xiaoxia(1726905151@qq.com)
MA Jing(849879969@qq.com)
LI Wei(1747015656@qq.com)
纸质出版日期:2024-05-25,
网络出版日期:2024-03-21,
收稿日期:2023-12-17,
录用日期:2024-01-24
扫 描 看 全 文
鲜亮,田小霞,马婧等.超细铂纳米催化剂的光化学合成及其催化还原硝基苯酚的应用[J].中山大学学报(自然科学版)(中英文),2024,63(03):137-146.
XIAN Liang,TIAN Xiaoxia,MA Jing,et al.Photochemical synthesis of ultrafine platinum nanocatalysts and their application in the catalytic reduction of nitrophenols[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(03):137-146.
鲜亮,田小霞,马婧等.超细铂纳米催化剂的光化学合成及其催化还原硝基苯酚的应用[J].中山大学学报(自然科学版)(中英文),2024,63(03):137-146. DOI: 10.13471/j.cnki.acta.snus.ZR20230041.
XIAN Liang,TIAN Xiaoxia,MA Jing,et al.Photochemical synthesis of ultrafine platinum nanocatalysts and their application in the catalytic reduction of nitrophenols[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(03):137-146. DOI: 10.13471/j.cnki.acta.snus.ZR20230041.
以乙二醇(EG)为还原剂,通过波长为395 nm近紫外光和450、650 nm的可见光照射C
60
及K
2
[PtCl
4
]混合液,制备了超细铂纳米颗粒(Pt/C
60
-E)。利用X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、X射线光电子能谱(XPS)以及高分辨率透射电子显微镜(HR-TEM)等表征手段对Pt/C
60
催化剂的组成及形貌进行了研究,结果表明,铂纳米颗粒在C
60
表面分散良好,平均粒径约为2.6 nm。在催化
p
-NP还原实验中,在近紫外光(395 nm)照射下所制备催化剂(Pt/C
60-
E3)表现出最高的催化活性
,其速率常数
k=
0.12 min
-1
。在催化剂循环实验中,多次循环催化剂仍具有较高的活性,实验证明光化学法对前驱体铂催化剂制备起到良好的作用。
This study focuses on synthesizing ultrafine platinum nanoparticles (Pt/C
60
-E) by irradiating a mixture of C
60
and K
2
[PtCl
4
]
with ethylene glycol (EG) as the reducing agent. The process utilizes near-ultraviolet (UV) light at a wavelength of 395 nm
along with visible light at 450 and 650 nm. The composition and morphology of the Pt/C
60
catalyst were investigated using characterization techniques including X-ray diffraction (XRD)
Fourier transform infrared spectroscopy (FT-IR)
X-ray photoelectron spectroscopy (XPS)
and high-resolution transmission electron microscopy (HR-TEM). The results revealed a well-dispersed distribution of Pt nanoparticles on the C
60
surface
with an average particle size of about 2.6 nm. In the catalytic reduction experiments of
p
-NP
the Pt/C
60
-E3 catalyst
prepared under near-ultraviolet irradiation (395 nm)
exhibited superior catalytic activity
with a rate constant (
k
) of 0.12 min
-1
. Furthermore
in the catalyst cycling experiments
the catalysts remained highly active even after multiple cycles
demonstrating the effectiveness of the photochemical method in synthesizing precursor Pt catalysts.
超细铂纳米颗粒富勒烯光化学法降解p-硝基苯酚
platinum ultrafine nanoparticlesfullerenephotochemical methoddegradation of p-nitrophenol
AN W, CHUANG K T, SANGER A R, 2002. Catalyst-support interaction in fluorinated carbon-supported Pt catalysts for reaction of NO with NH3[J]. J Catal, 211(2): 308-315.
BAI S, SHEN X, ZHU G, et al, 2012. In situ growth of NixCo100-x nanoparticles on reduced graphene oxide nanosheets and their magnetic and Catalytic Properties[J]. ACS Appl Mater Interfaces, 4(5): 2378-2386.
BATHULA C, SUBALAKSHMI K, KUMAR K A, et al, 2020. Ultrasonically driven green synthesis of palladium nanoparticles by Coleus amboinicus for catalytic reduction and Suzuki-Miyaura reaction[J]. Colloids Surf B Biointerfaces, 192: 111026.
BHARDWAJ A, KAUR J, WUEST M, et al, 2017. In situ click chemistry generation of cyclooxygenase-2 inhibitors[J]. Nat Commun, 8(1): 1-9.
CHANG J, FENG L, LIU C, et al, 2014. Ni2P enhances the activity and durability of the Pt anode catalyst in direct methanol fuel cells[J]. Energy Environ Sci, 7(5): 1628-1632.
CHO Y H, YOO S J, CHO Y H, et al, 2008. Enhanced performance and improved interfacial properties of polymer electrolyte membrane fuel cells fabricated using sputter-deposited Pt thin layers[J]. Electrochim Acta, 53(21): 6111-6116.
DAI Y, YU P, ZHANG X, et al, 2016. Gold nanoparticles stabilized by amphiphilic hyperbranched polymers for catalytic reduction of 4-nitrophenol[J]. J Catal, 337: 65-71.
de BORTOLI A L, 2023. Flow simulation in direct ethanol fuel cells using multifunctional anode catalysts[J]. J Power Sources, 560: 232675.
DIN I U, SHAHARUN M S, NAEEM A, et al, 2020. Carbon nanofibers as potential materials for catalysts support, a mini-review on recent advances and future perspective[J]. Ceram Int, 46(11): 18446-18452.
FANG Q R, ZHU G S, JIN Z, et al, 2006. A multifunctional metal-organic open framework with a bcu topology constructed from undecanuclear clusters[J]. Angew Chem Int Ed Engl, 45(37): 6126-6130.
GAN J, HUANG Z, LUO W, et al, 2021. Platelet carbon nanofibers as support of Pt-CoO electrocatalyst for superior hydrogen evolution[J]. J Energy Chem, 52: 33-40.
GUO X F, JANG D Y, JANG H G, et al, 2012. Hydrogenation and dehydrogenation reactions catalyzed by CNTs supported palladium catalysts[J]. Catal Today, 186(1): 109-114.
ISMAIL A A, ALBUKHARI S M, MAHMOUD M H H, 2021. Highly efficient and accelerated photoreduction of nitrobenzene over visible-light-driven PtO@Cr2O3 nanocomposites[J]. Surf Interfaces, 27: 101527.
JIANG L, SUN G, ZHOU Z, et al, 2005. Size-controllable synthesis of monodispersed SnO2 nanoparticles and application in electrocatalysts[J]. J Phys Chem B, 109(18): 8774-8778.
KERTALLI E, SCHOUTEN J C, NIJHUIS T A, 2017. Effect of hydrogen and propylene on the hydrogen peroxide decomposition over Pt, PtO and Au catalysts[J]. Appl Catal A Gen, 538: 131-138.
LEE G, SHIM J H, KANG H, et al, 2009. Monodisperse Pt and PtRu/C60 hybrid nanoparticles for fuel cell anode catalysts[J]. Chem Commun, (33): 5036-5038.
LI F, CAO B, ZHU W, et al, 2017. Hydrogenation of phenol over Pt/CNTs: The effects of Pt loading and reaction solvents[J]. Catalysts, 7(5): 145.
LI W, XIAN L, ZHAO Y, et al, 2023. Stepwise preparation of uniform-size ultrafine Pt nanoparticles for high-performance catalysis of methanol oxidation and nitrophenol reduction[J]. ACS Appl Nano Mater, 6(20): 19176-19188.
LI Y, CAO Y, XIE J, et al, 2015. Facile solid-state synthesis of Ag/graphene oxide nanocomposites as highly active and stable catalyst for the reduction of 4-nitrophenol[J]. Catal Commun, 58: 21-25.
LIU P, ZHAO Y, QIN R, et al, 2016. Photochemical route for synthesizing atomically dispersed palladium catalysts[J]. Science, 352(6287): 797-801.
MA J, HABRIOUX A, PISAREK M, et al, 2013. Induced electronic modification of Pt nanoparticles deposited onto graphitic domains of carbon materials by UV irradiation[J]. Electrochem Commun, 29: 12-16.
MAO J, CHEN Y, PEI J, et al, 2016. Pt–M (M = Cu, Fe, Zn, etc.) bimetallic nanomaterials with abundant surface defects and robust catalytic properties[J]. Chem Commun, 52(35): 5985-5988.
NIE R, WANG J, WANG L, et al, 2012. Platinum supported on reduced graphene oxide as a catalyst for hydrogenation of nitroarenes[J]. Carbon, 50(2): 586-596.
ORTIZ-HERRERA J C, CRUZ-MARTÍNEZ H, SOLORZA-FERIA O, et al, 2022. Recent progress in carbon nanotubes support materials for Pt-based cathode catalysts in PEM fuel cells[J]. Int J Hydrog Energy, 47(70): 30213-30224.
PANIGRAHI S, BASU S, PRAHARAJ S, et al, 2007. Synthesis and size-selective catalysis by supported gold nanoparticles: Study on heterogeneous and homogeneous catalytic process[J]. J Phys Chem C, 111(12): 4596-4605.
RANJANA M, SAHU P, RAMESH V V E, et al, 2023. Ethylenediamine mediated, environmentally benign synthesis of copper nanowires and their catalytic activity towards 4-nitrophenol reduction[J]. ChemistrySelect, 8(30): e202204351.
SANTIAGO E I, VARANDA L C, VILLULLAS H M, 2007. Carbon-supported Pt-Co catalysts prepared by a modified polyol process as cathodes for PEM fuel cells[J]. J Phys Chem C, 111(7): 3146-3151.
SHI W, ZHANG B, LIN Y, et al, 2016. Enhanced chemoselective hydrogenation through tuning the interaction between Pt nanoparticles and carbon supports: Insights from identical location transmission electron microscopy and X-ray photoelectron spectroscopy[J]. ACS Catal, 6(11): 7844-7854.
SHI Y C, FENG J J, LIN X X, et al, 2019. One-step hydrothermal synthesis of three-dimensional nitrogen-doped reduced graphene oxide hydrogels anchored PtPd alloyed nanoparticles for ethylene glycol oxidation and hydrogen evolution reactions[J]. Electrochim Acta, 293: 504-513.
SONG P T, 2022. Finite-size effect of a weakly interacting Bose gas at zero-temperature[J]. Phys Lett A, 455: 128515.
SUBHAN F, ASLAM S, YAN Z, et al, 2021. Palladium nanoparticles decorated on ZSM-5 derived micro-/ mesostructures (MMZ) for nitrophenol reduction and MB degradation in water[J]. J Environ Chem Eng, 9(1): 105002.
SUN X Q, GAO X H, WANG Y Y, et al, 2022. Study of the mechanism of nitrogen doping in carbon supports on promoting electrocatalytic oxygen reduction reaction over platinum nanoparticles[J]. J Fuel Chem Technol, 50(11): 1427-1436.
SWAIN S, ALTAEE A, SAXENA M, et al, 2022. A comprehensive study on heterogeneous single atom catalysis: Current progress, and challenges[J]. Coord Chem Rev, 470: 214710.
TOL R T, MATHOT V B F, GROENINCKX G, 2005. Confined crystallization phenomena in immiscible polymer blends with dispersed micro- and nanometer sized PA6 droplets, part 2: Reactively compatibilized PS/PA6 and (PPE/PS)/PA6 blends[J]. Polymer, 46(2): 383-396.
TUO Y X, SHI L J, CHENG H Y, et al, 2018. Insight into the support effect on the particle size effect of Pt/C catalysts in dehydrogenation[J]. J Catal, 360: 175-186.
XIAN L, MA J, LI W, et al, 2022. Synthesis of ultrafine platinum nanocatalysts by ice-photochemical method and their application in catalytic degradation of 4-nitrophenol[J]. ChemistrySelect, 7(45): e202204071.
XIAN L, SU B Q, FENG Y X, et al, 2021. The photochemical effects of visible light on K2[PtCl4]hydrolysis and the synthesis of Pt nano catalysts[J]. Inorg Nano Met Chem, 51(6): 882-888.
XIANG Y Z, LV Y A, XU T Y, et al, 2011. Selectivity difference between hydrogenation of acetophenone over CNTs and ACs supported Pd catalysts[J]. J Mol Catal A Chem, 351: 70-75.
XIE W, ZHANG Y, LIEW K, et al, 2012. Effect of catalyst confinement and pore size on Fischer-Tropsch synthesis over cobalt supported on carbon nanotubes[J]. Sci China Chem, 55(9): 1811-1818.
XUE H, ZHANG J, HAN S, et al, 2019. Effect of asphaltenes on the structure and surface properties of wax crystals in waxy oils[J]. Energy Fuels, 33(10): 9570-9584.
YANG F R, GAO L, LAI W C, et al, 2023. Recent advance on structural design of high-performance Pt-based nanocatalysts for oxygen reduction reaction[J]. Adv Sens Energy Mater, 2(1): 100022.
YOO P K, KIM S, 2022. Preparation and electrochemical activity of platinum catalyst-supported graphene and Fe-based metal-organic framework composite electrodes for fuel cells[J]. J Ind Eng Chem, 105: 259-267.
ZHANG M, LIU J, ZHANG Y H, et al, 2023a. Preparation of highly dispersed silicon spheres supported cobalt-based catalysts and their catalytic performance for Fischer-Tropsch synthesis[J]. J Fuel Chem Technol, 51(5): 608-615.
ZHANG Q, LU X, YUE F, et al, 2023b. N-doped semi-graphitic C loaded with metallic Co: Synthesis parameters and catalytic selective reduction of p-nitrophenol[J]. New J Chem, 47(8): 3834-3846.
ZHAO J, CHEN C, MA W, 2005. Photocatalytic degradation of organic pollutants under visible light irradiation[J]. Top Catal, 35(3): 269-278.
ZHAO Z, BAI P, DU W, et al, 2020. An overview of graphene and its derivatives reinforced metal matrix composites: Preparation, properties and applications[J]. Carbon, 170: 302-326.
ZHOU C, GAN M, XIE F, et al, 2020. Pt nanoparticles coated on multiwalled carbon nanotubes by the modification of small-sized molybdenum phosphide for enhanced methanol electro-oxidation[J]. Ionics, 26(12): 6331-6340.
ZHOU X, BAI X, 2023. PdCu alloy prepared by ultrasonic method catalyzes the degradation of p-nitrophenol[J]. Environ Sci Pollut Res, 30(16): 48449-48459.
ZHU J, FIGUEIREDO J L, FARIA J L, 2008. Au/activated-carbon catalysts for selective oxidation of alcohols with molecular oxygen under atmospheric pressure: Role of basicity[J]. Catal Commun, 9(14): 2395-2397.
0
浏览量
9
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构