1.昆明理工大学信息工程与自动化学院,云南 昆明 650500
2.云南省计算机技术应用重点实验室,云南 昆明 650500
杨青青(1981年生),女;研究方向:可重构智能表面技术;E-mail:13078770200@163.com
纸质出版日期:2024-07-25,
网络出版日期:2024-04-01,
收稿日期:2023-11-21,
录用日期:2024-01-04
移动端阅览
杨青青,李学文,彭艺等.基于平行因子分解的IRS辅助毫米波信道估计[J].中山大学学报(自然科学版)(中英文),2024,63(04):124-131.
YANG Qingqing,LI Xuewen,PENG Yi,et al.IRS-assisted millimeter-wave channel estimation based on parallel factorization[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(04):124-131.
杨青青,李学文,彭艺等.基于平行因子分解的IRS辅助毫米波信道估计[J].中山大学学报(自然科学版)(中英文),2024,63(04):124-131. DOI: 10.13471/j.cnki.acta.snus.ZR20230019.
YANG Qingqing,LI Xuewen,PENG Yi,et al.IRS-assisted millimeter-wave channel estimation based on parallel factorization[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(04):124-131. DOI: 10.13471/j.cnki.acta.snus.ZR20230019.
提出了一种基于平行因子分解的信道估计算法。首先,根据毫米波信道固有的稀疏特性对信道进行建模,利用块衰落信道的特点将信号矩阵构建成一个3维张量,并且利用平行因子分解算法对张量进行分解。然后利用压缩感知理论将分解后的矩阵转化为稀疏信号的恢复问题。最后,利用改进的双线性交替最小二乘算法对信道进行求解。仿真结果表明,与现有的BALS算法、wBALS算法和LSKRF算法相比,本文算法估计精度较高。
A channel estimation algorithm based on parallel factor(PARAFAC) decomposition is proposed. Firstly, the channel is modeled according to the inherent sparse characteristics of the millimeter-wave channel. Then, the signal matrix is constructed into a three-dimensional tensor by using the characteristics of the block fading channel, and the tensor is decomposed by the parallel factorization algorithm. Then, the compressed sensing(CS) theory is used to transform the decomposed matrix into a sparse signal recovery problem. Finally, the bilinear alternating least squares(NBALS) algorithm is improved to solve the channel. The simulation shows that compared with the existing BALS algorithm, wBALS algorithm, and LSKRF algorithm, the proposed algorithm improves the estimation accuracy.
可重构智能表面毫米波通信信道估计张量平行因子分解
IRSmillimeter wave communicationchannel estimationtensorparallel factorization
张静,王栋,张梦雨, 2022. 改进的IRS辅助毫米波MIMO级联信道估计[J]. 数据采集与处理, 37(6): 1259-1267.
AN J C, XU C, GAN L, et al, 2022. Low-complexity channel estimation and passive beamforming for RIS-assisted MIMO systems relying on discrete phase shifts[J]. IEEE Trans Commun, 70(2): 1245-1260.
BELDI C, DZIRI A, ABDELKEFI F, et al, 2023. Parafac decomposition based channel estimation for RIS-aided multi-user miso wireless communications[C] // International Wireless Communications and Mobile Computing (IWCMC). Marrakesh, Morocco: 1537-1542.
CHEN J, LIANG Y C, CHENG H V, et al, 2023. Channel estimation for reconfigurable intelligent surface aided multi-user mmwave MIMO systems[J]. IEEE Trans Wireless Commun, 22(10): 6853-6869.
COMON P, LUCIANI X, de ALMEIDA A L F, 2009. Tensor decompositions, alternating least squares and other tales[J]. J Chemom, 23(7/8): 393-405.
de ARAUJO G T, de ALMEIDA A L F, 2020. Parafac-based channel estimation for intelligent reflective surface assisted MIMO system[C]//11th Sensor Array and Multichannel Signal Processing Workshop (SAM).Hangzhou, China:IEEE:1-5.
de ARAUJO G T, de ALMEIDA A L F, BOYER R, 2021. Channel estimation for intelligent reflecting surface assisted MIMO systems: A tensor modeling approach[J]. IEEE J Sel Top Signal Process, 15(3): 789-802.
FANG J, WANG F Y, SHEN Y N, et al, 2016. Super-resolution compressed sensing for line spectral estimation: An iterative reweighted approach[J]. IEEE Trans Signal Process, 64(18): 4649-4662.
GUO X F, CHEN Y B, WANG Y, 2023. Wireless beacon enabled hybrid sparse channel estimation for RIS-aided mmwave communications[J]. IEEE Trans Commun, 71(5): 3144-3160.
HUANG J, WANG C X, SUN Y Z, et al, 2022. Reconfigurable intelligent surfaces: Channel characterization and modeling[J]. Proc IEEE, 110(9): 1290-1311.
JUNG M, SAAD W, DEBBAH M, et al, 2021. On the optimality of reconfigurable intelligent surfaces (RISS): Passive beamforming, modulation, and resource allocation[J]. IEEE Trans Wireless Commun, 20(7): 4347-4363.
KOLDA T G, BADER B W, 2009. Tensor decompositions and applications[J]. SIAM Review, 51(3): 455-500.
LI R W, SUN S, TAO M X, 2023. Ergodic achievable rate maximization of RIS-assisted millimeter-wave MIMO-OFDM communication systems[J]. IEEE Trans Wireless Commun, 22(3): 2171-2184.
LIN H Y, ZHANG G Y, MO W, et al, 2021. Parafac-based channel estimation for relay assisted mmwave massive MIMO systems[C]// 7th International Conference on Computer and Communications (ICCC).Chengdu, China: 1869-1874.
SRIVASTAV P S, LEE H, 2023. Admm-based channel estimation methods for millimeter wave MIMO system[C]// 14th International Conference on Ubiquitous and Future Networks (ICUFN). Paris, France: 774-779.
WANG P L, FANG J, DUAN H P, et al, 2020. Compressed channel estimation for intelligent reflecting surface-assisted millimeter wave systems[J]. IEEE Signal Process Lett, 27: 905-909.
WEI L, HUANG C W, ALEXANDROPOULOS G C, et al, 2020. Parallel factor decomposition channel estimation in RIS-assisted multi-user MIMO communication[C]//11th Sensor Array and Multichannel Signal Processing Workshop (SAM). Hangzhou, China: IEEE: 1-5.
WIPF D, NAGARAJAN S, 2010. Iterative reweighted <math id="M233"><msub><mrow><mi mathvariant="italic">𝓁</mi></mrow><mrow><mn mathvariant="normal">1</mn></mrow></msub></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638616&type=3.30200005https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638618&type=2.62466669 and <math id="M234"><msub><mrow><mi mathvariant="italic">𝓁</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638620&type=3.30200005https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=66638622&type=2.62466669 methods for finding sparse solutions[J]. IEEE J Sel Top Signal Process, 4(2): 317-329.
WU Q Q, ZHANG R, 2020. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Commun Mag, 58(1): 106-112.
WU Q Q, ZHANG S W, ZHENG B X, et al, 2021. Intelligent reflecting surface-aided wireless communications: A tutorial[J]. IEEE Trans Commun, 69(5): 3313-3351.
YAN W J, YUAN X J, HE Z Q, et al, 2020. Passive beamforming and information transfer design for reconfigurable intelligent surfaces aided multi-user MIMO systems[J]. IEEE J Sel Areas Commun, 38(8): 1793-1808.
ZENG S H, ZHANG H L, DI B Y, et al, 2021. Reconfigurable intelligent surfaces in 6G: Reflective, transmissive, or both?[J]. IEEE Commun Lett, 25(6): 2063-2067.
ZHOU G, PAN C H, REN H, et al, 2022. Channel estimation for RIS-aided multi-user millimeter-wave systems[J]. IEEE Trans Signal Process, 70: 1478-1492.
0
浏览量
46
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构