1.中山大学地理科学与规划学院 / 粤北岩溶区森林生态系统碳水耦合野外观测研究站, 广东 广州 510006
2.嘉应学院地理科学与旅游学院,广东 梅州 514015
贺一聪(1999年生),男;研究方向:植被变化和陆地生态系统碳循环;E-mail:heyc5@mail2.sysu.edu.cn
陶贞(1965年生),女;研究方向:陆地生物地球化学循环;E-mail:taozhen@mail.sysu.edu.cn
纸质出版日期:2024-05-25,
网络出版日期:2024-01-18,
收稿日期:2023-11-05,
录用日期:2023-12-08
扫 描 看 全 文
贺一聪,陶贞,梁誉正等.粤东北山地生态系统植被及其碳储量时空变化[J].中山大学学报(自然科学版)(中英文),2024,63(03):1-11.
HE Yicong,TAO Zhen,LIANG Yuzheng,et al.Spatiotemporal variations in vegetation and carbon storage of mountainous ecosystems in Northeastern Guangdong Province[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(03):1-11.
贺一聪,陶贞,梁誉正等.粤东北山地生态系统植被及其碳储量时空变化[J].中山大学学报(自然科学版)(中英文),2024,63(03):1-11. DOI: 10.13471/j.cnki.acta.snus.ZR20230005.
HE Yicong,TAO Zhen,LIANG Yuzheng,et al.Spatiotemporal variations in vegetation and carbon storage of mountainous ecosystems in Northeastern Guangdong Province[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(03):1-11. DOI: 10.13471/j.cnki.acta.snus.ZR20230005.
根据遥感影像和实测土壤(选择林地、草地、耕地和建设用地等28个样地,采集112个土壤样品)有机碳含量数据,运用Sen氏趋势分析、Hurst指数、偏相关分析和InVEST模型等方法,探究粤东北山地生态系统植被及其碳储量时空变化特征。研究结果表明:1) 研究区植被覆盖度较高,归一化植被指数(NDVI)变化范围为0.14~0.95,平均值为0.79。2000-2021年全域植被覆盖度呈上升趋势,空间分布存在差异,除梅州市区外,其他地区NDVI均有不同程度的增加,其中山地NDVI增加显著,且随海拔先上升后下降。研究区未来植被变化可能存在下降趋势(Hurst指数<0.5);2) 2000-2020年研究区碳储量呈现减少趋势,共计减少1.33 Tg。土地利用变化,尤其林地、草地转化为耕地和建设用地是研究区碳储量减少的主要原因。研究结果可为我国亚热带生态系统碳汇功能变化研究提供基础数据。
Based on remote sensing images and measurements of soil organic carbon content (including 28 sample sites, 112 soil samples from forests, grasslands, croplands, and construction lands), methods including Sen's trend analysis, Hurst exponent, partial correlation analysis, and the InVEST model were employed to investigate the spatiotemporal variations in vegetation and carbon storage of the mountainous ecosystem in northeastern Guangdong province. The results show that: (1) The research area exhibits relatively high vegetation coverage, with a Normalized Difference Vegetation Index (NDVI) ranging from 0.14 to 0.95 and an average value of 0.79. From 2000 to 2021, the vegetation coverage of the study region increased. Apart from the city area of Meizhou, the rest showed varying degrees of NDVI increase, especially in mountainous areas, where it showed a trend of rising and subsequently declining with elevation. The Hurst exponent (<0.5) implies a potential declining trend in vegetation changes in the study area. (2) From 2000 to 2020, the carbon storage in the study area displayed a decreasing trend, amounting to a total reduction of 1.33 teragrams (Tg). Land use changes, particularly the conversion of forests and grasslands into agricultural and urban areas, are the primary reasons for the decrease in carbon storage in the study area. The conclusions can serve as fundamental data for investigating the changes in carbon sequestration functionality within subtropical ecosystems in China.
植被变化碳储量NDVI土地利用变化InVEST模型山地生态系统
vegetation changescarbon storageNDVIland use changesInVEST modelmountainous ecosystems
蔡博峰,于嵘,2009. 基于遥感的植被长时序趋势特征研究进展及评价[J]. 遥感学报,13(6):1170-1186.
陈丹,钱峻屏,张虹鸥,等,2006. 基于遥感数据的广东植被指数时空变化研究[J]. 生态科学,25(5):412-416.
陈光水,杨玉盛,刘乐中,等,2007. 森林地下碳分配(TBCA)研究进展[J]. 亚热带资源与环境学报,2(1):34-42.
陈文裕,夏丽华,徐国良,等,2022. 2000—2020年珠江流域NDVI动态变化及影响因素研究[J]. 生态环境学报,31(7):1306-1316.
邓兴耀,姚俊强,刘志辉,2017. 基于GIMMS NDVI的中亚干旱区植被覆盖时空变化[J]. 干旱区研究,34(1):10-19.
邓玉娇,王捷纯,徐杰,等,2021. 广东省NDVI时空变化特征及其对气候因子的响应[J]. 生态环境学报,30(1):37-43.
丁岳,王柳柱,桂峰,等,2023. 基于InVEST模型和PLUS模型的环杭州湾生态系统碳储量[J]. 环境科学,44(6): 3343-3352.
董良山,2011. 合水水库加固扩建征地移民和泥沙淤积问题的解决[J]. 广东水利水电,(6):23-25+48.
付含培,王让虎,王晓军,2022.1999—2018年黄河流域NDVI时空变化及驱动力分析[J]. 水土保持研究,29(2): 145-153+162.
黄豪奔,徐海量,林涛,等,2022.2001—2020年新疆阿勒泰地区归一化植被指数时空变化特征及其对气候变化的响应[J]. 生态学报,42(7): 2798-2809.
姜春,吴志峰,程炯,等,2016. 广东省土地覆盖变化对植被净初级生产力的影响分析[J]. 自然资源学报,31(6):961-972.
解宪丽,孙波,周慧珍,等,2004. 不同植被下中国土壤有机碳的储量与影响因子[J]. 土壤学报,41(5):687-699.
柯新利,唐兰萍,2019. 城市扩张与耕地保护耦合对陆地生态系统碳储量的影响——以湖北省为例[J]. 生态学报,39(2):672-683.
李卓,孙然好,张继超,等,2017. 京津冀城市群地区植被覆盖动态变化时空分析[J]. 生态学报,37(22):7418-7426.
林彤,杨木壮,吴大放,等,2022. 基于InVEST-PLUS模型的碳储量空间关联性及预测——以广东省为例[J]. 中国环境科学,42(10):4827-4839.
刘冠,李国庆,李洁,等,2021. 基于InVEST模型的1999—2016年麻塔流域碳储量变化及空间格局研究[J]. 干旱区研究,38(1):267-274.
刘金山,张蓓,彭泰来,等,2022. 广东省国家级公益林NDVI时空变化特征分析[J]. 中南林业调查规划,41(2):32-35.
刘宪锋,潘耀忠,朱秀芳,等,2015a. 2000—2014年秦巴山区植被覆盖时空变化特征及其归因[J]. 地理学报,70(5):705-716.
刘宪锋,任志远,林志慧,等,2013. 2000—2011年三江源区植被覆盖时空变化特征[J]. 地理学报,68(7):897-908.
刘宪锋,朱秀芳,潘耀忠,等,2015b. 1982—2012年中国植被覆盖时空变化特征[J]. 生态学报,35(16):5331-5342.
刘晓娟,黎夏,梁迅,等,2019. 基于FLUS-InVEST模型的中国未来土地利用变化及其对碳储量影响的模拟[J]. 热带地理,39(3):397-409.
刘洋,张军,周冬梅,等,2021. 基于InVEST模型的疏勒河流域碳储量时空变化研究[J]. 生态学报,41(10):4052-4065.
罗薇,张会化,陈俊坚,等,2018. 广东省土壤有机碳储量及分布特征[J]. 生态环境学报,27(9):1593-1601
穆少杰,李建龙,陈奕兆,等,2012. 2001—2010年内蒙古植被覆盖度时空变化特征[J]. 地理学报,67(9):1255-1268.
彭保发,石忆邵,王贺封,等,2013. 城市热岛效应的影响机理及其作用规律——以上海市为例[J]. 地理学报,68(11):1461-1471.
朴世龙,何悦,王旭辉,等,2022. 中国陆地生态系统碳汇估算:方法、进展、展望[J]. 中国科学:地球科学,52(6):1010-1020.
阮柱. 2021. 基于NDVI重构的广东省NDVI变化及其驱动因素分析[D]. 北京: 中国科学院大学.
尚志海,丘世钧,2004. 广东省红色风化壳地区水土流失严重性的成因分析——以五华县为例[J]. 地质灾害与环境保护,15(4):15-18.
孙红雨,王长耀,牛铮,等,1998. 中国地表植被覆盖变化及其与气候因子关系——基于NOAA时间序列数据分析[J]. 遥感学报,2(3):204-210,T001.
王思,张路路,林伟彪,等,2022. 基于MODIS归一化植被指数的广东省植被覆盖与土地利用变化研究[J]. 生态学报,42(6):2149-2163.
王正兴,刘闯,HUETE Alfredo,2003. 植被指数研究进展: 从AVHRR-NDVI到MODIS-EVI[J]. 生态学报,23(5): 979-987.
吴佩君,刘小平,黎夏,等,2016. 基于InVEST模型和元胞自动机的城市扩张对陆地生态系统碳储量影响评估——以广东省为例[J]. 地理与地理信息科学,32(5):22-28+36+127.
向书江,张骞,王丹,等,2022. 近20年重庆市主城区碳储量对土地利用/覆被变化的响应及脆弱性分析[J]. 自然资源学报,37(5):1198-1213.
许洁,陈惠玲,商沙沙,等,2020. 2000—2014年青藏高原植被净初级生产力时空变化及对气候变化的响应[J]. 干旱区地理,43(3):592-601.
徐丽,何念鹏,于贵瑞,2019. 2010中国陆地生态系统碳密度数据集[J]. 中国科学数据,4(1): 86-92.
杨春来,夏斌,连剑波,2013. 梅州市土地利用变化及生态环境效应分析[J]. 南方农业学报,44(12):2027-2030.
杨潋威,赵娟,朱家田,等,2022. 基于PLUS和InVEST模型的西安市生态系统碳储量时空变化与预测[J]. 自然资源遥感,(4):175-182.
张燕,师学义,唐倩,2021. 不同土地利用情景下汾河上游地区碳储量评估[J]. 生态学报,41(1):360-373.
钟美英,李凤梅,2010. 五华县近52年降水统计分析及最大降水量重现期的估算[J]. 广东水利水电,(12):37-40.
朱思佳,冯徽徽,邹滨,等,2022. 2000—2019年洞庭湖流域植被NPP时空特征及驱动因素分析[J]. 自然资源遥感,(3): 196-206.
朱文博,张静静,崔耀平,等,2019. 基于土地利用变化情景的生态系统碳储量评估——以太行山淇河流域为例[J]. 地理学报,74(3):446-459.
朱志强,马晓双,胡洪,2021. 基于耦合FLUS-InVEST模型的广州市生态系统碳储量时空演变与预测[J]. 水土保持通报,41(2):222-239.
ALAM S A,STARR M,CLARK B J F,2013. Tree biomass and soil organic carbon densities across the Sudanese woodland savannah: A regional carbon sequestration study[J]. J Arid Environ,89: 67-76.
CEN Y,LOU Y,GAO Z,et al,2023. Vegetation carbon input moderates the effects of climate change on topsoil organic carbon in China[J]. CATENA,228: 107188.
COTRUFO M F,LAVALLEE J M,2022. Soil organic matter formation,persistence,and functioning: A synthesis of current understanding to inform its conservation and regeneration[M]//Advances in Agronomy. Amsterdam: Elsevier. 1-66.
FENG H,KANG P,DENG Z,et al,2023. The impact of climate change and human activities to vegetation carbon sequestration variation in Sichuan and Chongqing[J]. Environ Res,238: 117138.
GAO W,ZHENG C,LIU X,et al,2022. NDVI-based vegetation dynamics and their responses to climate change and human activities from 1982 to 2020: A case study in the Mu Us Sandy Land,China[J]. Ecol Indic,137: 108745.
HICKS PRIES C E,CASTANHA C,PORRAS R C,et al,2017. The whole-soil carbon flux in response to warming[J]. Science,355(6332): 1420-1423.
HOLBEN B N,1986. Characteristics of maximum-value composite images from temporal AVHRR data[J]. Int J Remote Sens,7(11): 1417-1434.
KONG D,ZHANG Q,SINGH V P,et al,2017. Seasonal vegetation response to climate change in the Northern Hemisphere (1982-2013)[J]. Glob Planet Change,148: 1-8.
LAL R,2004. Soil carbon sequestration impacts on global climate change and food security[J]. Science,304(5677): 1623-1627.
LUO Z,LUO Y,WANG G,et al,2020. Warming-induced global soil carbon loss attenuated by downward carbon movement[J]. Glob Change Biol,26(12): 7242-7254.
LYU J,FU X,LU C,et al,2023. Quantitative assessment of spatiotemporal dynamics in vegetation NPP,NEP and carbon sink capacity in the Weihe River Basin from 2001 to 2020[J]. J Clean Prod,428: 139384.
PIAO S,FANG J,CIAIS P,et al,2009. The carbon balance of terrestrial ecosystems in China[J]. Nature,458(7241): 1009-1013.
PIAO S, WANG X, CIAIS P, et al,2011. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006[J]. Glob Change Biol,17(10): 3228-3239.
RUMAINUL I M,BALWANT S,DIJKSTRA FEIKE A,2022. Stabilisation of soil organic matter: Interactions between clay and microbes[J]. Biogeochemistry,160(2): 145-158.
SUN W,WANG Y,FU Y H,et al,2019. Spatial heterogeneity of changes in vegetation growth and their driving forces based on satellite observations of the Yarlung Zangbo River Basin in the Tibetan Plateau[J]. J Hydrol,574: 324-332.
TAO J,ZHANG Y,DONG J,et al,2015. Elevation-dependent relationships between climate change and grassland vegetation variation across the Qinghai-Xizang Plateau[J]. Int J Climatol,35(7): 1638-1647.
TUCKER C J,1979. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sens Environ,8(2): 127-150.
WANG X,LI S,WANG L,et al,2023. Effects of cropland reclamation on soil organic carbon in China's black soil region over the past 35 years[J]. Glob Change Biol,29(18): 5460-5477.
WANG X,OU T,ZHANG W,et al,2022. An overview of vegetation dynamics revealed by remote sensing and its feedback to regional and global climate[J]. Remote Sens,14(20): 5275.
WEI X,YANG J,LUO P,et al,2022. Assessment of the variation and influencing factors of vegetation NPP and carbon sink capacity under different natural conditions[J]. Ecol Indic,138: 108834.
WITZGALL K,VIDAL A,SCHUBERT D I,et al,2021. Particulate organic matter as a functional soil component for persistent soil organic carbon[J]. Nat Commun,12(1): 4115.
ZHANG G,ZHANG Y,DONG J,et al,2013. Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011[J]. Proc Natl Acad Sci USA,110(11): 4309-4314.
0
浏览量
16
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构