中山大学航空航天学院,广东 深圳 518107
赖丞(1998年生),男;研究方向:非线性动力学;E-mail:laich7@mail2.sysu.edu.cn
陈衍茂(1982年生),男;研究方向:非线性动力学;E-mail:chenymao@mail.sysu.edu.cn
纸质出版日期:2024-05-25,
网络出版日期:2024-01-24,
收稿日期:2023-11-02,
录用日期:2023-11-30
扫 描 看 全 文
赖丞,郑泽昌,陈衍茂.采用时域平衡描述函数法求解含非线性能量阱的机翼颤振系统[J].中山大学学报(自然科学版)(中英文),2024,63(03):147-153.
LAI Cheng,ZHENG Zechang,CHEN Yanmao.Describing function method with balancing in time domain for 2-DOF airfoil system with nonlinear energy sink[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(03):147-153.
赖丞,郑泽昌,陈衍茂.采用时域平衡描述函数法求解含非线性能量阱的机翼颤振系统[J].中山大学学报(自然科学版)(中英文),2024,63(03):147-153. DOI: 10.13471/j.cnki.acta.snus.ZR20230002.
LAI Cheng,ZHENG Zechang,CHEN Yanmao.Describing function method with balancing in time domain for 2-DOF airfoil system with nonlinear energy sink[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(03):147-153. DOI: 10.13471/j.cnki.acta.snus.ZR20230002.
采用一种时域平衡描述函数法(DFBT),高效求解含非线性能量阱(NES)的二元机翼颤振系统。该方法采用一组用于描述周期运动的基函数,在时域上将动力学方程离散并逐点列出平衡方程,以此求解出基函数的谐波系数。通过离散得到的逐点平衡方程提供超定代数方程组,结合最小值优化使得迭代容易收敛,从而实现谐波系数的求解。该方法无需对周期响应进行频繁的时频域转换,提高了计算效率。求解结果与数值方法的计算结果吻合良好,验证了方法的有效性。同时,由于DFBT结果具有半解析形式,可以得到颤振系统的非稳定解,获得了完整的亚临界分岔图。因此,DFBT适用于复杂非线性多自由度颤振系统的稳态响应求解。
A describing function method with balancing in time domain (DFBT) is used to efficiently solve 2-DOF airfoil system with nonlinear energy sink (NES). This method uses a set of basis functions to describe the periodic motion, discretes the dynamic equation in time domain and lists the equilibrium equation point by point to solve the basis function and obtain the harmonic coefficient. The point-by-point equilibrium equation obtained by discretization can provide overdetermined algebraic equations for solving harmonic coefficients, and the iterative convergence can be easily combined with minimum optimization.The method does not need to switch the time-domain and frequency-domain responses of the nonlinear system frequently, which brings convenience to the solution. The results of the solution agree well with those of the numerical method, which verifies the effectiveness of the method. At the same time, due to the semi-analytic form of DFBT results, the unsteady solution of the flutter system and the complete subcritical bifurcation diagram can be obtained. Therefore, DFBT is suitable for solving the steady-state response of multi-degree-of-freedom flutter systems with complex nonlinearity.
非线性颤振系统极限环非线性能量阱半解析方法
nonlinear flutter systemlimit cyclenonlinear energy sinksemi-analytic method
刘广, 刘济科, 吕中荣,2018. 基于时域响应灵敏度分析的非线性系统参数识别[J].振动与冲击,37(21):213-219.
王德亮, 刘济科, 刘广, 2023. 基于Tikhonov正则化改进的IHB法求解Mathieu-Duffing系统多重解[J]. 中山大学学报(自然科学版)(中英文), 62(5): 78-84.
CHEN Y M, LIU J K, MENG G,2012. Incremental harmonic balance method for nonlinear flutter of an airfoil with uncertain-but-bounded parameters[J].Appl Math Model, 36(2): 657-667.
CLARKE M J, HANCOCK G J, 1990. A study of incremental-iterative strategies for non-linear analyses[J]. Int J Numer Methods Eng, 29(7): 1365-1391.
GUO H, CHEN Y, YANG T, 2013. Limit cycle oscillation suppression of 2-DOF airfoil using nonlinear energy sink[J]. Appl Math Mech-Engled, 34(10): 1277-1290.
GUO H, CAO S, YANG T, et al, 2018. Aeroelastic suppression of an airfoil with control surface using nonlinear energy sink[J]. Nonlinear Dyn, 94: 857-872.
HALL K C, EKICI K, THOMAS J P, et al, 2013. Harmonic balance methods applied to computational fluid dynamics problems[J]. Int J Comput Fluid Dyn, 27(2): 52-67.
HE L S, SEAID M, 2016. A runge-kutta-Chebyshev SPH algorithm for elastodynamics[J]. Acta Mech, 227(7): 1813-1835.
HUANG J L, ZHU W D,2017. A new incremental harmonic balance method with two time scales for quasi-periodic motions of an axially moving beam with internal resonance under single-tone external excitation[J]. J Vib Acoustics, 139(2): 021010.
LIAO S J, SHERIF S A, 2004. Beyond perturbation: Introduction to the homotopy analysis method[J]. Appl Mech Rev, 57(5): B25-B26.
LIU J K, CHEN F X, CHEN Y M, 2012. Bifurcation analysis of aeroelastic systems with hysteresis by incremental harmonic balance method[J]. Appl Math Comput, 219(5): 2398-2411.
LIU G, LIU J K, WANG L, et al, 2022. Time-domain minimum residual method combined with energy balance for nonlinear conservative systems[J]. Mech Syst Signal Process, 170: 108818.
MA K, DU J T, LIU Y, 2023. Nonlinear dynamic behavior analysis of closed-loop self-excited crankshaft model using improved Newmark-β method[J]. Nonlinear Dyn, 111(6): 5107-5124.
PIDAPARTHI B, MISSOUM S, 2018. Optimization of nonlinear energy sinks for the mitigation of limit cycle oscillations[C]// Multidisciplinary Analysis and Optimization Conference. Atlanta, Georgia Reston, Virginia: AIAA:3569.
VAKAKIS A F, 2001. Inducing passive nonlinear energy sinks in vibrating systems[J]. J Vib Acoustics, 123(3): 324-332.
YANG F, SEDAGHATI R, ESMAILZADEH E, 2022. Vibration suppression of structures using tuned mass damper technology: A state-of-the-art review[J]. J Vib Control, 28(7/8): 812-836.
ZHAO L C, YANG Z C, 1990. Chaotic motions of an airfoil with non-linear stiffness in incompressible flow[J]. J Sound Vib, 138(2): 245-254.
ZHENG Z C, LU Z R, CHEN Y M, et al, 2022. A modified incremental harmonic balance method combined with Tikhonov regularization for periodic motion of nonlinear system[J]. J Appl Mech, 89(2): 021001.
ZHENG Z C, LU Z R, LIU G, et al, 2023. Describing function method with pointwise balancing in time domain for periodic responses of non-smooth self-excited system[J]. Acta Mech, 234(7): 2763-2782.
ZHONG W X, CAI Z Q, 2000. Precise integration method for LQG optimal measurement feedback control problem[J]. Appl Math Mech, 21: 1417-1422.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构