东南大学土木工程学院,江苏 南京 211189
闵馨童(1998年生),女;研究方向:水文模型数据同化;E-mail:220211360@seu.edu.cn
朱仟(1989年生),女;研究方向:水文气象遥感;E-mail:zhuqian@seu.edu.cn
纸质出版日期:2024-03-25,
网络出版日期:2023-12-18,
收稿日期:2023-10-31,
录用日期:2023-11-23
扫 描 看 全 文
闵馨童,朱轲,朱仟等.基于DHSVM的遥感土壤水分数据同化对水文过程关键要素的影响——以湘江流域为例[J].中山大学学报(自然科学版)(中英文),2024,63(02):35-45.
MIN Xintong,ZHU Ke,ZHU Qian,et al.Impact of DHSVM-based multi-source remote sensing soil moisture data assimilation on key elements of hydrological processes —A case study of the Xiangjiang River Basin[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(02):35-45.
闵馨童,朱轲,朱仟等.基于DHSVM的遥感土壤水分数据同化对水文过程关键要素的影响——以湘江流域为例[J].中山大学学报(自然科学版)(中英文),2024,63(02):35-45. DOI: 10.13471/j.cnki.acta.snus.ZR20230001.
MIN Xintong,ZHU Ke,ZHU Qian,et al.Impact of DHSVM-based multi-source remote sensing soil moisture data assimilation on key elements of hydrological processes —A case study of the Xiangjiang River Basin[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(02):35-45. DOI: 10.13471/j.cnki.acta.snus.ZR20230001.
本文研究基于集合卡尔曼滤波(EnKF)的多源遥感土壤水分数据同化,对分布式水文模型DHSVM模拟过程中关键要素的影响。以湘江流域为例,选择SMAP和ASCAT遥感土壤水分数据,利用EnKF算法对DHSVM进行土壤水分模块的遥感数据同化。通过对比分析无同化方案、ASCAT同化方案和SMAP同化方案得到的径流和土壤水分结果,评估多源遥感土壤水分数据同化对水文关键变量模拟的影响。结果显示,湘江流域内,ASCAT同化无论是从径流模拟还是土壤水分模拟方面都要优于SMAP同化。径流模拟方面,ASCAT同化方案的NSE(NSE=0.677)相比无同化方案(NSE=0.662)有所提升,BIAS值减小了1.7个百分点。土壤水分模拟方面,相比无同化方案,ASCAT同化NSE提升了10%,BIAS减小了4.7个百分点,RMSE减小了12.5%。相对而言,SMAP同化方案整体模拟效果的改进并不显著。研究结果突出了遥感土壤水分数据同化的有效性,对水文变量模拟的改进具有重要意义。
This study aims to investigate the effects of EnKF-based multi-source remote sensing soil moisture data assimilation on key elements of hydrological processes in the context of the Xiangjiang River Basin. SMAP and ASCAT remote sensing soil moisture data were selected for assimilation into the Distributed Hydrology Soil Vegetation Model (DHSVM) using the Ensemble Kalman Filter (EnKF) algorithm. By comparing and analyzing the simulated runoff and soil moisture results of three simulation scenarios: the non-assimilated model
ASCAT-DHSVM
and SMAP-DHSVM
the impact of multi-source remote sensing soil moisture data assimilation on hydrological variable simulation was evaluated. The results indicate that within the Xiangjiang River Basin
the ASCAT assimilation scheme outperforms the SMAP assimilation scheme in both streamflow simulation and soil moisture simulation. In terms of streamflow simulation
the ASCAT assimilation scheme exhibits an overall improvement in Nash-Sutcliffe Efficiency (NSE) (NSE=0.677) compared to the non-assimilation scheme (NSE=0.662)
along with a decrease of 1.7 percentage points in BIAS. In terms of soil moisture simulation
compared to the non-assimilation scheme
the ASCAT assimilation scheme shows an overall improvement of 10% in NSE value
a decrease of 4.7 percentage points in BIAS
and a decrease of 12.5% in RMSE. In contrast
the improvement in the overall simulation performance of the SMAP assimilation scheme is statistically insignificant. The results underscore the efficacy of assimilating remote sensing soil moisture data
particularly through the ASCAT assimilation scheme
in enhancing hydrological variable simulation. These findings hold significant implications for water resource management in the Xiangjiang River Basin.
DHSVMEnKF多源遥感数据土壤水分数据同化
DHSVMEnsemble Kalman Filtermulti-source remote sensing datasoil moisturedata assimilation
陈坰烽,2010. 基于分布式水文模型的流域尺度土壤湿度遥感数据同化研究[D]. 南京:南京大学.
陈腊娇,朱阿兴,秦承志,等,2011. 流域生态水文模型研究进展[J]. 地理科学进展,30(5): 535-544.
陈伟,郭宇星,张齐飞,等,2023. 多源遥感产品在黄土丘陵沟壑区土壤水分反演中的适用性评估[J]. 应用基础与工程科学学报,31(5): 1155-1169.
陈勇强,杨娜,胡新,等,2020. SMOS与SMAP过境时段表层土壤水分的稳定性研究[J]. 遥感技术与应用,35(1): 58-64.
董伟,2015. 基于SWAT模型的绕阳河流域径流模拟研究[D]. 阜新:辽宁工程技术大学.
黄图南,郑有飞,段长春,等,2017. 几种卫星反演土壤湿度在中国地区的对比分析[J]. 遥感信息,32(3): 25-33.
姜浩楠,蔡远利,2018. 带有噪声递推估计的自适应集合卡尔曼滤波[J]. 控制与决策,33(9): 1567-1574.
李宏伟,祝海江,2020. 基于双线性插值的超声成像测井数据重采样处理方法研究[J]. 世界核地质科学,37(4): 291-295.
凌峰,2008. 基于空间信息技术的流域分布式水文模型研究[D]. 武汉:华中科技大学.
刘卯丑,2023. 湘江流域近30年景观格局演变及生态廊道模拟重建与优化[D]. 长沙:中南林业科技大学.
刘永伟,王文,刘元波,等,2022. 基于EnKF法的径流数据同化对SWAT模型参数优化效果评估[J]. 河海大学学报(自然科学版),50(2): 1-10.
栾承梅,2005. 流域水文模型参数优化问题研究[D]. 南京:河海大学.
吕沛恒,2022. 新型遥感土壤湿度产品的精度验证及其在地表蒸散发计算中的应用[D].长春:吉林大学.
宁娟,2017.干旱区潜水蒸发规律及土壤水分数据同化研究[D]. 乌鲁木齐:新疆大学.
泮苏莉,2017. 浙江省潜在蒸散发变化及水文过程研究[D]. 杭州:浙江大学.
王春娟,刘全明,尹承深,等,2023. 基于集合卡尔曼滤波同化方法和HYDRUS-1D模型的土壤水分模拟[J]. 干旱地区农业研究,41(2): 141-149.
王浩,李扬,任立良,等,2015. 水文模型不确定性及集合模拟总体框架[J]. 水利水电技术,46(6): 21-26.
王卫光,李进兴,魏建德,等,2018. 基于蒸散发数据同化的径流过程模拟[J]. 水科学进展,29(2): 158-168.
王文,刘永伟,寇小华,等,2012. 基于集合卡尔曼滤波和HYDRUS-1D模型的土壤剖面含水量同化试验[J]. 水利学报,43(11): 1302-1311.
王雨诗,闵馨童,王成,等,2022. 基于EnKF的湘江流域多源遥感土壤水分数据分析[J]. 中国水土保持科学,20(2): 40-48.
杨娜,汤燕杰,张宁馨,等,2022. 基于SMOS、SMAP数据的青藏高原季风及植被生长季土壤水分长消特征研究[J]. 遥感技术与应用,37(6): 1373-1384.
张剑明,黎祖贤,2009. 近50年湘江流域干湿气候变化若干特点[J].灾害学,24(4): 95-101.
曾家俊,麦叶鹏,李志威,等,2020. 广州天河智慧城SWMM参数敏感性分析[J]. 水资源保护,36(3): 15-21.
朱琳,2023. 全球多源遥感土壤湿度产品的数据质量分析与融合[D].青岛:青岛大学.
BAGUIS P,ROULIN E,2017. Soil moisture data assimilation in a hydrological model: A case study in Belgium using large-scale satellite data[J]. Remote Sens,9(8): 820.
BATHURST J C,WICKS J M,1991. Framework for erosion and sediment yield modeling[M/OL] // BOWLES D S,O'CONNELL P E,eds.Recent advances in the modeling of hydrologic systems:269-288. https://doi.org/10.1007/978-94-011-3480-4https://doi.org/10.1007/978-94-011-3480-4.
BROCCA L, MORAMARCO T, MELONE F,et al, 2012. Assimilation of surface- and root-zone ascat soil moisture products into rainfall-runoff modeling[J].IEEE Trans Geosci Remote Sensi, 50(7):2542-2555.
BURGIN M S,COLLIANDER A,NJOKU E G,et al,2017. A comparative study of the SMAP passive soil moisture product with existing satellite-based soil moisture products[J]. IEEE Trans Geosci Remote Sensi,55(5): 2959-2971.
CARTER C,LIANG S,2019. Evaluation of ten machine learning methods for estimating terrestrial evapotranspiration from remote sensing[J]. Int J Appl Earth Obs Geoinformation,78:86-92.
CASHION J,LAKSHMI V,BOSCH D,et al,2005. Microwave remote sensing of soil moisture: Evaluation of the TRMM microwave imager (TMI) satellite for the Little River Watershed Tifton,Georgia[J]. J Hydrol,307(1/2/3/4): 242-253.
CHEN F,CROW W T,COLLIANDER A,et al,2017. Application of triple collocation in ground-based validation of soil moisture active/passive (SMAP) level 2 data products[J]. IEEE J Sel Top Appl Earth Obs Remote Sens,10(2): 489-502.
COLLIANDER A,FISHER J B,HALVERSON G,et al,2017. Spatial downscaling of SMAP soil moisture using MODIS land surface temperature and NDVI during SMAPVEX15[J]. IEEE Geosci Remote Sens Lett, 14(11): 2107-2111.
D'URSO G,MINACAPILLI M,2006. A semi-empirical approach for surface soil water content estimation from radar data without a-priori information on surface roughness[J]. J Hydrol ,321(1/2/3/4): 297-310.
EL HAJJ M,BAGHDADI N, ZRIBI M,et al,2018. Evaluation of SMOS,SMAP,ASCAT and Sentinel-1 soil moisture products at sites in southwestern france[J]. Remote Sens,10(4): 569.
EVENSEN G, 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics[J]. J Geophys Res,99(C5): 10143-10162.
FISHER J B,MELTON F,MIDDLETON E,et al,2017.The future of evapotranspiration: Global requirements for ecosystem functioning,carbon and climate feedbacks,agricultural management,and water resources[J]. Water Resour Res,53(4): 2618-2626.
HAN E,MERWADE V,HEATHMAN G C,2012. Implementation of surface soil moisture data assimilation with watershed scale distributed hydrological model[J]. J Hydrol,416/417: 98-117.
LI Y,CONG Z,YANG D. 2023. Remotely sensed soil moisture assimilation in the distributed hydrological model based on the error subspace transform Kalman filter[J]. Remote Sens,15(7): 1852.
LIU Y M,WANG W,HU Y M,et al,2017. Investigating the impact of surface soil moisture assimilation on state and parameter estimation in SWAT model based on the ensemble Kalman filter in upper Huai River basin[J]. J Hydrol Hydromech,65(2): 123-133.
LO CONTI F,HSU K L,NOTO L V,et al,2014. Evaluation and comparison of satellite precipitation estimates with reference to a local area in the Mediterranean Sea[J]. Atmos Res,138: 189-204.
MAO Y ,CROW W T. NIJSSEN B,2019. A framework for diagnosing factors degrading the streamflow performance of a soil moisture data assimilation system[J]. J Hydrometeoro,20(1):79-97.
McMILLAN H K,WESTERBERG I K,KRUEGER T, 2018. Hydrological data uncertainty and its implications[J]. Wiley Interdiscip Rev Water,5(6): e1319.
MICHAUD J,SOROOSHIAN S,1994. Comparison of simple versus complex distributed runoff models on a midsized semiarid watershed[J]. Water Resour Res,30(3): 593-605.
MOUSA B G,SHU H J E,SCIENCE S, 2020. Spatial evaluation and assimilation of SMAP,SMOS,and ASCAT satellite soil moisture products over africa using statistical techniques[J]. Earth Space Sci,7(1):e2019EA000841.
NIJSSEN B,LETTENMAIER D P,2004. Effect of precipitation sampling error on simulated hydrological fluxes and states: Anticipating the Global Precipitation Measurement satellites[J]. J Geophys Res,109(D2).
SATO K T,1996. Kinematic wave modeling in water resources[J]. Eos Transactions,77(51): 520.
TIAN Y,XU Y P,WANG G,2018. Agricultural drought prediction using climate indices based on Support Vector Regression in Xiangjiang River Basin[J]. Sci Total Environ, 622/623: 710-720.
VINUKOLLU R K,WOOD E F,FERGUSON C R,et al,2011. Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches[J]. Remote Sens Environ,115(3):801-823.
WAGENER T,MONTANARI A,2011. Convergence of approaches toward reducing uncertainty in predictions in ungauged basins[J]. Water Resour Res,47:W06301.
WIGMOSTA M S,VAIL L W,LETTENMAIER D P, 1994. A distributed hydrology-vegetation model for complex terrain[J]. Water Resour Res,30(6):1665-1679.
ZHU Q,LUO Y L,XU Y P,et al,2019. Remote sensing satellite soil moisture for agricultural drought monitoring: Assessment of SMAP-derived soil water deficit index in Xiang River Basin,China[J]. Remote Sens,11(3):362.
ZHU Q,LUO Y L,ZHOU D Y,et al,2020. Drought prediction using in situ and remote sensing products with SVM over the Xiang River Basin,China[J]. Natural Hazards,105(2):2161-2185.
ZHU Q,WANG Y,LUO Y,2021. Improvement of multi layer soil moisture prediction using SVM_EnKF coupled with remote sensing soil moisture datasets over an agriculture dominant Basin in China[J]. Hydrol Process,35(4): e14154.
0
浏览量
8
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构