1.北京工商大学农产品质量安全追溯技术及应用国家工程研究中心,北京 100048
2.北京市房山区教师进修学校,北京 102401
左敏(1973年生),男;研究方向:食品大数据、深度学习;E-mail:zuomin@btbu.edu.cn
颜文婧(1985年生),女;研究方向:生物信息智能处理;E-mail:yanwenjing@btbu.edu.com
纸质出版日期:2024-01-25,
网络出版日期:2023-10-23,
收稿日期:2023-08-01,
录用日期:2023-08-22
扫 描 看 全 文
左敏,胡静珺,颜文婧等.基于嗅觉受体激活关系模拟的气味感知预测[J].中山大学学报(自然科学版)(中英文),2024,63(01):86-95.
ZUO Min,HU Jingjun,YAN Wengjing,et al.Prediction of olfactory perception based on simulation of olfactory receptor activation relationships[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(01):86-95.
左敏,胡静珺,颜文婧等.基于嗅觉受体激活关系模拟的气味感知预测[J].中山大学学报(自然科学版)(中英文),2024,63(01):86-95. DOI: 10.13471/j.cnki.acta.snus.2023E040.
ZUO Min,HU Jingjun,YAN Wengjing,et al.Prediction of olfactory perception based on simulation of olfactory receptor activation relationships[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(01):86-95. DOI: 10.13471/j.cnki.acta.snus.2023E040.
气味分子与嗅觉受体相互作用是引起气味感知的重要环节,对于揭示气味感知机制具有重要意义。然而,获得气味分子与人类嗅觉受体激活关系的实验性结果耗时耗力,且目前可用的激活关系数据数量不足以支持智能气味感知研究。因此,本研究构建了嗅觉受体蛋白质关系网络,并提取特征来训练气味分子-嗅觉受体激活关系预测模型。在气味感知预测中综合考虑气味分子特征和嗅觉受体蛋白激活模拟关系,实现了对人类气味感知的高精度回归预测。实验结果表明,融合气味分子-嗅觉受体激活关系的人类气味感知预测相关度指标为0.94,明显优于现有的气味感知预测模型。此外,研究还在预测基础上总结了气味分子-嗅觉受体激活-气味感知模式。本研究为气味感知预测引入了可观测的嗅觉受体激活机制特征,为深入探索和理解气味感知机制提供了新思路。
The interaction between odor molecules and olfactory receptors is a crucial step in olfactory perception and holds significant importance in unraveling the mechanism of olfactory perception. However, obtaining experimental results on the activation relationship between odor molecules and human olfactory receptors is time-consuming and labor-intensive, and the available data on activation relationships is currently insufficient to support intelligent olfactory perception research. Therefore, this study constructed a network of olfactory receptor protein relationships and extracted features to train a model for predicting the activation relationship between odor molecules and olfactory receptors. By integrating the features of odor molecules and the simulated activation relationship of olfactory receptor proteins in olfactory perception prediction, high-precision regression prediction of human olfactory perception was achieved. Experimental results showed that the correlation coefficient of human olfactory perception prediction fused with odor molecule-olfactory receptor activation relationship reached 0.94, significantly outperforming existing olfactory perception prediction models. Additionally, the study summarized the odor molecule-olfactory receptor activation-olfactory perception pattern, enriching our understanding of the mechanism of smell perception. This study introduced observable features of olfactory receptor activation mechanisms into olfactory perception prediction, providing new insights for further exploration and understanding of the mechanism of olfactory perception.
分子特征提取蛋白质特征提取嗅觉受体激活预测气味感知预测图卷积机器学习
molecular feature extractionprotein feature extractionolfactory receptor activation predictionolfactory perception predictiongraph convolutionmachine learning
AUDOUZE K, TROMELIN A, le BON A M, et al, 2014. Identification of odorant-receptor interactions by global mapping of the human odorome[J].PLoS One, 9(4): e93037.
BLONDEL V D, GUILLAUME J L, LAMBIOTTE R, et al, 2008. Fast unfolding of communities in large networks[J]. J Stat Mech, 2008(10): P10008.
BRAUN T, VOLAND P, KUNZ L, et al, 2007. Enterochromaffin cells of the human gut: Sensors for spices and odorants[J]. Gastroenterology, 132(5): 1890-1901.
BUCK L B, 2008. Olfactory receptors and odor coding in mammals[J]. Nutr Rev, 62: S184-S188.
CAMPELLO R J G B, KRÖGER P, SANDER J, et al, 2020. Density-based clustering[J]. Wiley Interdiscip Rev Data Min Knowl Discov, 10(2): e1343.
CERETO-MASSAGUÉ A, OJEDA M J, VALLS C, et al, 2015. Molecular fingerprint similarity search in virtual screening[J]. Methods, 71: 58-63.
CHAPUT M A, EL MOUNTASSIR F, ATANASOVA B, et al, 2012. Interactions of odorants with olfactory receptors and receptor neurons match the perceptual dynamics observed for woody and fruity odorant mixtures[J]. Eur J Neurosci, 35(4): 584-597.
COOK B L, STEUERWALD D, KAISER L, et al, 2009. Large-scale production and study of a synthetic G protein-coupled receptor: Human olfactory receptor 17-4[J]. Proc Natl Acad Sci USA, 106(29): 11925-11930.
CRASTO C, MARENCO L, MILLER P, et al, 2002. Olfactory Receptor Database: A metadata-driven automated population from sources of gene and protein sequences[J]. Nucleic Acids Res, 30(1): 354-360.
DEBNATH T, NAKAMOTO T, 2020. Predicting human odor perception represented by continuous values from mass spectra of essential oils resembling chemical mixtures[J]. PLoS One, 15(6): e0234688.
DUVENAUD D K, MACLAURIN D, AGUILERA-IPARRAGUIRRE J, et al, 2015. Convolutional networks on graphs for learning molecular fingerprints[J/OL]. arXiv:1509.09292v2.
EL MOUNTASSIR F, BELLOIR C, BRIAND L, et al, 2016. Encoding odorant mixtures by human olfactory receptors[J]. Flavour Fragr J, 31(5): 400-407.
FRANCIA S, LODOVICHI C, 2021. The role of the odorant receptors in the formation of the sensory map[J]. BMC Biol, 19(1): 174.
FUJITA Y, TAKAHASHI T, SUZUKI A, et al, 2007. Deorphanization of Dresden G protein-coupled receptor for an odorant receptor[J]. J Recept Signal Transduct, 27(4): 323-334.
JACQUIER V, PICK H, VOGEL H, 2006. Characterization of an extended receptive ligand repertoire of the human olfactory receptor OR17-40 comprising structurally related compounds[J]. J Neurochem, 97(2): 537-544.
JAEGER S, McRAE J, BAVA C, et al, 2013. A Mendelian trait for olfactory sensitivity affects odor experience and food selection[J]. Curr Biol, 23(16): 1601-1605.
KASYAP V L V S K B, BHAGAVAN V S, JAGADEESH M S, 2022. Graph neural networks based model for aroma prediction using molecular structures[C]//IEEE 3rd GCAT, Bangalore, India:1-6.
KELLER A, GERKIN R C, GUAN Y, et al, 2017. Predicting human olfactory perception from chemical features of odor molecules[J]. Science, 355(6327): 820-826.
KELLER A, VOSSHALL L B, 2016. Olfactory perception of chemically diverse molecules[J]. BMC Neurosci, 17(1): 1-17.
KELLER A, ZHUANG H, CHI Q, et al, 2007. Genetic variation in a human odorant receptor alters odour perception[J]. Nature, 449(7161): 468-472.
KIPF T N, WELLING M, 2016. Semi-supervised classification with graph convolutional networks [EB/OL]. arXiv:1609.02907.
KOWALEWSKI J, RAY A, 2020. Predicting human olfactory perception from activities of odorant receptors[J]. iScience, 23(8): 101361.
LAPID H, SHUSHAN S, PLOTKIN A, et al, 2011. Neural activity at the human olfactory epithelium reflects olfactory perception[J].Nat Neurosci, 14(11): 1455-1461.
LI H, PANWAR B, OMENN G S, et al, 2018. Accurate prediction of personalized olfactory perception from large-scale chemoinformatic features[J]. Gigascience, 7(2): gix127.
MAJID A, KRUSPE N, 2018. Hunter-gatherer olfaction is special[J]. Curr Biol, 28(3): 409-413.
MATARAZZO V, CLOT-FAYBESSE O, MARCET B, et al,2005. Functional characterization of two human olfactory receptors expressed in the baculovirus Sf9 insect cell system[J]. Chem Senses, 30(3): 195-207.
MENASHE I, ABAFFY T, HASIN Y, et al, 2007. Genetic elucidation of human hyperosmia to isovaleric acid[J]. PLoS Biol, 5(11): e284.
NEUHAUS E M, MASHUKOVA A, ZHANG W, et al, 2006. A specific heat shock protein enhances the expression of mammalian olfactory receptor proteins[J]. Chem Senses, 31(5): 445-452.
PATTANAIK L, COLEY C W, 2020. Molecular representation: Going long on fingerprints[J]. Chem, 6(6): 1204-1207.
SAITO H, CHI Q, ZHUANG H, et al, 2009. Odor coding by a Mammalian receptor repertoire[J]. Sci Signal, 2(60): ra9.
SCHMIEDEBERG K, SHIROKOVA E, WEBER H P, et al, 2007. Structural determinants of odorant recognition by the human olfactory receptors OR1A1 and OR1A2[J]. J Struct Biol, 159(3): 400-412.
SHANG L, LIU C, TOMIURA Y, et al, 2017. Machine-learning-based olfactometer: Prediction of odor perception from physicochemical features of odorant molecules[J]. Anal Chem, 89:11999–12005.
SHIRASU M, YOSHIKAWA K, TAKAI Y, et al, 2014. Olfactory receptor and neural pathway responsible for highly selective sensing of musk odors[J]. Neuron, 81(1): 165-178.
TOPIN J, de MARCH C A, CHARLIER L, et al, 2014. Discrimination between olfactory receptor agonists and non-agonists[J]. Chem - A Eur J, 20(33): 10227-10230.
VASSAR R, NGAI J, AXEL R, 1993. Spatial segregation of odorant receptor expression in the mammalian olfactory epithelium[J]. Cell, 74(2): 309-318.
XU J, ZHANG Y, 2010. How significant is a protein structure similarity with TM-score = 0.5?[J].Bioinformatics, 26(7): 889-895.
ZHANG Y, SKOLNICK J, 2004. Scoring function for automated assessment of protein structure template quality[J]. Proteins Struct Funct Bioinform, 57(4): 702-710.
0
浏览量
4
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构