1.南京理工大学物理学院,江苏 南京 210094
2.中山大学土木工程学院,广东 珠海 519082
3.东莞理工学院生态环境与建筑工程学院,广东 东莞 523000
4.中煤科工清洁能源股份有限公司,北京 100013
程子睿(1994年生),男;研究方向:固废资源化利用;E-mail:chengzr@njust.edu.cn
赵计辉(1985年生),男;研究方向:固废资源化利用;E-mail:zhaojh28@mail.sysu.edu.cn
纸质出版日期:2024-05-25,
网络出版日期:2024-01-10,
收稿日期:2023-07-29,
录用日期:2023-11-22
扫 描 看 全 文
程子睿,赵计辉,董圣焜等.煤化工污泥的微生物种群结构与水分分布特征[J].中山大学学报(自然科学版)(中英文),2024,63(03):96-102.
CHENG Zirui,ZHAO Jihui,DONG Shengkun,et al.Characterization of microbial community structure and water distribution in coal chemical sludge[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(03):96-102.
程子睿,赵计辉,董圣焜等.煤化工污泥的微生物种群结构与水分分布特征[J].中山大学学报(自然科学版)(中英文),2024,63(03):96-102. DOI: 10.13471/j.cnki.acta.snus.2023E039.
CHENG Zirui,ZHAO Jihui,DONG Shengkun,et al.Characterization of microbial community structure and water distribution in coal chemical sludge[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(03):96-102. DOI: 10.13471/j.cnki.acta.snus.2023E039.
现代煤化工产业是实现煤炭资源清洁化利用的重要途径,煤化工生产过程会产生大量含水率高、脱水性差的煤化工污泥,是制约煤化工产业发展的典型难处理固废。煤化工污泥的脱水性受污泥中微生物种群结构及水分分布特征的影响,对其解析将有助于揭示煤化工污泥的束水结构并可为煤化工污泥高效脱水方法的研发提供一定的理论指导。本研究以煤制烯烃污泥及煤制油污泥为研究对象,采用16s rRNA基因测序解析其微生物种群结构,通过差示扫描量热法(DSC,differential scanning calorimetry)和低场核磁共振法(LF-NMR,low-field nuclear magnetic resonance)表征污泥的水分分布特征。结果表明:两种煤化工产业选取的污水处理工艺不同,导致煤化工污泥的微生物种群结构存在一定差异,但变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)和绿弯菌门(Chloroflexi)是两种污泥中的主要菌种;LF-NMR法测得水分分布更为准确,根据污泥中水的结合能可将其划分为结合水、机械结合水以及自由水,污泥中大部分水分(90%以上)为机械结合水;采用能够破坏污泥絮体及微生物群落结构的脱水方法,可以进一步实现煤化工污泥的高效、深度脱水。
Modern coal chemical industry is an important means to realize the clean utilization of coal resources, the coal chemical sludge generated during the process of coal conversion process is a typical refractory solid waste restricting the development of coal chemical industry since its extremely high water content and the poor dewaterability. It has been documented that the dewaterability of coal chemical sludge is affected by the microbial community structure and water distribution characteristics; and thus, it is necessary to investigate the microbial community information and water distribution in coal chemical sludge to provide theoretical guidance for the high-efficiency sludge dewatering technology. In this study, coal-to-olefins sludge and coal-to-oil sludge were selected and the microbial community structure of the two sludge was obtained through analyzing 16s rRNA gene sequencing, and the water distribution was obtained by DSC and LF-NMR method. The results show that the different sewage treatment processes chosen by two coal chemical industries lead to certain differences in the microbial community structures of coal chemical sludge, Proteobacteria, Bacteroidetes and Chloroflexi are the dominant phylum in the two sludge. The LF-NMR method can more accurately measure the water distribution, and the water in the sludge can be classified into bound water, mechanical bound water and free water according.
煤化工污泥微生物种群结构高通量测序分析水分分布低场核磁
coal chemical sludgemicrobial community structurehigh throughput sequencingwater distributionlow-field nuclear magnetic resonance
陈东杰, 夏霆, 张旭, 等, 2023. 城市污泥脱水预处理技术研究进展[J]. 南京工业大学学报(自然科学版), 45(1): 12-23.
柳金秋, 2023. 水热改性对煤化工污泥束缚水性能的影响研究[J]. 煤化工, 51(3): 120-123.
罗晓, 郑向阳, 赵丛丛, 等, 2018. A/O工艺中污泥浓度对微生物群落结构的影响[J]. 中国环境科学, 38(1): 275-283.
马尔妮, 王望, 李想, 等, 2017. 基于LFNMR的木材干燥过程中水分状态变化[J]. 林业科学, 53(6): 111-117.
马切切, 袁林江, 牛泽栋, 等, 2021. 活性污泥微生物群落结构及与环境因素响应关系分析[J]. 环境科学, 42(8): 3886-3893.
王杰, 彭永臻, 杨雄, 等, 2016. 温度对活性污泥沉降性能与微生物种群结构的影响[J]. 中国环境科学, 36(1): 109-116.
荀锐, 王伟, 乔玮, 2009. 水热改性污泥的水分布特征与脱水性能研究[J]. 环境科学, 30(3): 851-856.
于晓, 李衍博, 张文哲, 等, 2018. 化学调理法改善污泥脱水的研究进展[J]. 工业水处理, 38(11): 1-6.
张恩华, 戴幼芬, 肖勇, 等, 2017. 还原Cr(Ⅵ)的混菌胞外聚合物和细菌群落结构分析[J]. 中国环境科学, 37(1): 352-357.
张萌, 赵亚妮, 张李凌, 等, 2022. 高海拔地区与低海拔地区污水处理系统中微生物群落特征分析对比[J]. 环境工程, 40(3): 66-73.
赵鹏, 王刚, 寇丽红, 等, 2023. 气化灰渣浮选精炭制备活性炭的研究[J]. 燃料化学学报(中英文), (8): 1193-1200.
CAO B, ZHANG T, ZHANG W, et al, 2021. Enhanced technology based for sewage sludge deep dewatering: A critical review[J]. Water Res, 189: 116650.
FENG J, ZHANG Q, TAN B, et al, 2022. Microbial community and metabolic characteristics evaluation in start-up stage of electro-enhanced SBR for aniline wastewater treatment[J]. J Water Process Eng, 45: 102489.
KOPP J, DICHTL N, 2000. Prediction of full-scale dewatering results by determining the water distribution of sewage sludges[J]. Water Sci Technol, 42(9): 141-149.
KOPP J, DICHTL N, 2001. Influence of the free water content on the dewaterability of sewage sludges[J]. Water Sci Technol, 44(10): 177-183.
LI Y, WANG Y, LIN Z, et al, 2018. A novel methanotrophic co-metabolic system with high soluble methane monooxygenase activity to biodegrade refractory organics in pulping wastewater[J]. Bioresour Technol, 256: 358-365.
MAO H, WANG F, MAO F, et al, 2016. Measurement of water content and moisture distribution in sludge by 1 nuclear magnetic resonance spectroscopy[J]. Dry Technol, 34(3): 267-274.
SHI J, HUANG W, HAN H, et al, 2021. Pollution control of wastewater from the coal chemical industry in China: Environmental management policy and technical standards[J]. Renew Sustain Energy Rev, 143: 110883.
WANG H, ZHANG S, WANG J, et al, 2018. Comparison of performance and microbial communities in a bioelectrochemical system for simultaneous denitrification and chromium removal: Effects of pH[J]. Process Biochem, 73: 154-161.
WU B, NI B J, HORVAT K, et al, 2017. Occurrence state and molecular structure analysis of extracellular proteins with implications on the dewaterability of waste-activated sludge[J]. Environ Sci Technol, 51(16): 9235-9243.
WU W, LI X, ZHOU B, et al, 2023. Impacts of floc breakage on dewaterability of chemically conditioned sludges and implications on practical conditioning strategies[J]. Chem Eng J, 459: 141626.
XIA Z, WANG W, WANG G, 2019. Study of the crystal structure effect and mechanism during chemical looping gasification of coal[J]. J Energy Inst, 92(5): 1284-1293.
YAN X, ZHENG S, YANG J, et al, 2020. Effects of hydrodynamic shear stress on sludge properties, N2O generation, and microbial community structure during activated sludge process[J]. J Environ Manag, 274: 111215.
YANG A, PENG M, ZHANG G, et al, 2018. Effects of light-oxygen conditions on microbial community of photosynthetic bacteria during treating high-ammonia wastewater[J]. Process Biochem, 72: 137-142.
YANG C, ZHANG W, LIU R, et al, 2011. Phylogenetic diversity and metabolic potential of activated sludge microbial communities in full-scale wastewater treatment plants[J]. Environ Sci Technol, 45(17): 7408-7415.
YUAN D, WANG Y, QIAN X, 2017. Variations of internal structure and moisture distribution in activated sludge with stratified extracellular polymeric substances extraction[J]. Int Biodeterior Biodegrad, 116: 1-9.
ZHANG L, ZHANG M, YOU S, et al, 2021. Effect of Fe3+ on the sludge properties and microbial community structure in a lab-scale A2O process[J]. Sci Total Environ, 780: 146505.
ZHANG W, XU Y, DONG B, et al, 2019. Characterizing the sludge moisture distribution during anaerobic digestion process through various approaches[J]. Sci Total Environ, 675: 184-191.
ZHANG Y, LU G, ZHANG H, et al, 2020. Enhancement of nitrogen and phosphorus removal, sludge reduction and microbial community structure in an anaerobic/anoxic/oxic process coupled with composite ferrate solution disintegration[J]. Environ Res, 190: 110006.
ZHAO Q, LIU Y, 2016. State of the art of biological processes for coal gasification wastewater treatment[J]. Biotechnol Adv, 34(5): 1064-1072.
0
浏览量
11
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构