1.东莞市农业科学研究中心,广东 东莞 523000
2.中山大学生命科学学院,广东 广州 510275
3.中国科学技术大学化学与材料科学学院,安徽 合肥 230026
梁卫驱(1980年生),男;研究方向:农业生物技术;E-mail:75426838@qq.com
胡珊(1981年生),女;研究方向:农业生物技术;E-mail:29657166@qq.com
刘孝龙(1985年生),男;研究方向:生物技术;E-mail:liuxl85@ustc.edu.cn
纸质出版日期:2024-03-25,
网络出版日期:2023-10-23,
收稿日期:2023-06-21,
录用日期:2023-08-09
扫 描 看 全 文
梁卫驱,胡珊,黄皓等.植物根际促生菌F13的筛选、鉴定及对豆角促生、抗病的效果[J].中山大学学报(自然科学版)(中英文),2024,63(02):150-159.
LIANG Weiqu,HU Shan,HUANG Hao,et al.Screening and identification of plant growth-promoting rhizobacteria F13 and its effect on growth promotion and disease resistance of cowpea[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(02):150-159.
梁卫驱,胡珊,黄皓等.植物根际促生菌F13的筛选、鉴定及对豆角促生、抗病的效果[J].中山大学学报(自然科学版)(中英文),2024,63(02):150-159. DOI: 10.13471/j.cnki.acta.snus.2023E035.
LIANG Weiqu,HU Shan,HUANG Hao,et al.Screening and identification of plant growth-promoting rhizobacteria F13 and its effect on growth promotion and disease resistance of cowpea[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(02):150-159. DOI: 10.13471/j.cnki.acta.snus.2023E035.
为获得具有药肥双效的多功能植物根际促生菌,从葡萄根际土壤中分离出同时具有溶磷解钾功能的菌株F13。该菌通过形态学观察、生理生化检测和16S rDNA比对,鉴定为铜绿假单胞菌(
Pseudomonas aeruginosa
)。经平板对峙法测定菌株F13对8种植物病原菌的抑制率为63.26%~81.53%。田间应用中发现,菌株F13发酵液灌根处理对豆角(
Vigna unguiculata
subsp.
sesquipedalis
(L.) Verdc.)生长具有显著的促进作用,其中实验组在株高、叶片数、茎粗方面分别高于对照组26.7%、24.4%、11.9%,产量高于对照组39.68%;在植株吸收磷、钾元素方面分别高于对照组11.5%、46.8%;在豆角果实中维生素C、可溶性蛋白含量方面分别高于对照组22.15%、55.55%。此外,菌株F13对豆角白粉病的相对防效达 71.92%。因此,菌株F13是一株具有巨大应用潜力的药肥双效植物根际促生菌。
In order to obtain a plant growth-promoting rhizobacteria with dual effects of medicine and fertilizer,a bacteria strain,named as F13, which has the function of dissolving phosphorus and potassium, was isolated from the grape rhizosphere soil. The bacterium was identified as
Pseudomonas aeruginosa
by morphological observation, physiology and biochemistry and 16S rDNA identification. The plate confrontation method determined that the fermentation broth of strain F13 had an antagonistic effect on 8 kinds of plant pathogens, and the antibacterial rate was between 63.26% and 81.53%. In the field application, it was found that the root irrigation of the strain F13 had a significant effect on the growth of cowpea. The experimental group was 26.7%, 24.4%, and 11.9%, respectively, higher than that of the control group in terms of plant height, number of leaves, and stem diameter, and the yield increased by 39.68%. Compared with the control group, the experimental group increased phosphorus and potassium by 11.5% and 46.8%, and increased vitamin C and soluble protein content by 22.15% and 55.55%, respectively. In addition, strain F13 had a good control effect on cowpea powdery mildew, and the control efficacy in field reached 71.92%. Therefore, strain F13 is a rhizosphere growth-promoting bacterium with great potential for application of medicine and fertilizer.
植物根际促生菌促生作用拮抗作用
plant growth-promoting rhizobacteriapromoting effectantagonistic action
陈姗姗, 2018. 植物根际促生菌(PGPR)的鉴定及其对植物生长的影响[D]. 重庆:重庆师范大学.
崔元培, 魏子鲲, 王建忠, 等, 2021. “双减” 背景下化肥、农药施用现状与发展路径[J]. 北方园艺, (9) :164-173.
党雯, 郜春花, 张强, 等, 2014. 解钾菌的研究进展及其在农业生产中的应用[J]. 山西农业科学, 42(8) :921-924.
方运玲, 孙爽, 申阅, 等, 2014. 微生物源农药申嗪霉素的研制与应用[J]. 农药学学报, 16(4) :387-393.
何艳, 冯佳胤, 徐建明, 2018. 我国农田有机和生物污染研究工作展望: 基于“农田有毒有害化学/生物污染与防控机制研究”国家重点研发计划项目工作的思考[J]. 农业环境科学学报, 37(11) :2371-2374.
何艳慧, 2020. 解盐促生菌Pseudomonas sp. Rs-198全基因组学分析及其与植物根际互作机制研究[D]. 石河子:石河子大学.
蒋海霞,周莲,何亚文, 2015.铜绿假单胞菌生防菌株抑菌代谢产物及其生防应用研究进展[J].微生物学通报, 42(7): 1338-1349.
李建宏, 2017. 优良植物根际促生菌Bacillus mycoides Gnyt1特性研究及全基因组测序分析[D]. 兰州:甘肃农业大学.
李志明, 吉庆勋, 杨曼利, 等, 2019. 我国农田土壤污染现状及防治对策[J]. 河南农业, 23:46-49.
刘海霞,2022. 铜绿假单胞菌 B-6 对土壤微生态的影响及对番茄青枯病的防效[D]. 太谷:山西农业大学.
孙韵雅, 陈佳, 王悦, 等, 2020. 根际促生菌促生机理及其增强植物抗逆性研究进展[J]. 草地学报, 28(5): 1203-1215.
王博, 徐志宇, 王楷, 等, 2019.1961—2015年各国化肥消费量与人均GDP相关性分析[J]. 农业资源与环境学报, (6): 718-727.
谢雨歆, 曾庆宾, 杨军伟, 等, 2017. 植物根际促生细菌在烤烟提质增产中的作用[J]. 烟草科技, 50(7):14-21+30.
闫洪雪, 刘露, 李丽, 等, 2016. PGPR的研究进展及其在农业上的应用[J]. 黑龙江农业科学, (6):148-151.
杨增梅, 2021. 豆角的生长习性和两种病害及其防治[J]. 农家参谋, 697(13):63-64.
于文清, 丁洪胜, 闫凤超, 等, 2020. 植物根际促生菌促生及御病研究进展[J]. 现代化农业, (8):53-56.
张爱民, 李乃康, 赵钢勇, 等, 2015. 土壤中解磷、解钾微生物研究进展[J]. 河北大学学报(自然科学版), 35(4):442-448.
张典利, 孟臻, 亓文哲, 等, 2018. 植物根际促生菌的研究与应用现状[J]. 世界农药, 40(6):37-43+50.
张祥会, 马晓晓, 董斌, 等, 2021. 不同施肥模式对珠江三角洲豆角产量的影响[J]. 湖北农业科学, 60(17):23-26.
张莹, 秦宇轩, 尚庆茂, 等, 2017. 解淀粉芽孢杆菌L-H15的促生与抗病特性研究[J]. 农业机械学报, 48(12): 284-291+298.
赵晨阳, 戴峰, 刘述颖, 等, 2019. 植物根际促生菌的研究进展[J]. 安徽农业科学, 47(16):12-13+24.
周益帆, 白寅霜, 岳童, 等, 2023. 植物根际促生菌促生特性研究进展[J]. 微生物学通报, 50(2): 644-666.
ANAND U, VAISHNAV A, SHARMA S K, et al, 2022. Current advances and research prospects for agricultural and industrial uses of microbial strains available in world collections[J]. Sci Total Environ, 842: 156641.
CHOPRA A, BOBATE S, RAHI P, et al, 2020. Pseudomonas aeruginosa RTE4: A tea rhizobacterium with potential for plant growth promotion and biosurfactant production[J]. Front Bioeng Biotechnol , 8: 861.
DUTTA P, MUTHUKRISHNAN G, KUTALINGAM GOPALASUBRAMAIAM S, et al, 2022. Plant growth-promoting rhizobacteria (PGPR) and its mechanisms against plant diseases for sustainable agriculture and better productivity[J]. BIOCELL, 46(8):1843-1859.
GAMEZ R, CARDINALE M, MONTES M, et al, 2019. Screening, plant growth promotion and root colonization pattern of two rhizobacteria (Pseudomonas fluorescens Ps006 and Bacillus amyloliquefaciens Bs006) on banana cv. Williams (Musa acuminata Colla) [J]. Microbiol Res, 220:12-20.
GE Y, HUANG X, WANG S, et al, 2004. Phenazine-1-carboxylic acid is negatively regulated and pyoluteorin positively regulated by gacA in Pseudomonas sp. M18[J]. Fems Microbiol Lett, 237(1): 41-47.
GUO Y, WANG J, 2021. Spatiotemporal changes of chemical fertilizer application and its environmental risks in China from 2000 to 2019[J]. Int J Env Res Pub Heal, 18(22): 11911.
HUANG J, LIU Z, LI S, et al, 2016. Isolation and engineering of plant growth promoting rhizobacteria Pseudomonas aeruginosa for enhanced cadmium bioremediation[J]. J Gen Appl Microbiol, 62(5):258-265.
KHAN M S, ZAIDI A, AHEMAD M, et al, 2010. Plant growth promotion by phosphate solubilizing fungi-current perspective[J]. Arch Agron Soil Sci, 56 (1): 73-98.
KHAN M S, GAO J, ZHANG M, et al, 2022. Pseudomonas aeruginosa Ld-08 isolated from Lilium davidii exhibits antifungal and growth-promoting properties[J]. PLoS One, 17(6): e0269640.
MAJEED A, KALEEM ABBASI M, HAMEED S, et al, 2018. Pseudomonas sp. AF-54 containing multiple plant beneficial traits acts as growth enhancer of Helianthus annuus L. under reduced fertilizer input[J]. Microbiol Res, 216:56-69.
MOUSA W K, SHEARER C, LIMAY-RIOS V, et al, 2016. Root-hair endophyte stacking in finger millet creates a physicochemical barrier to trap the fungal pathogen Fusarium graminearum[J]. Nat Microbiol, 1(12): 16167.
OLANREWAJU O S, BABALOLA O O, 2022. Plant growth-promoting rhizobacteria for orphan legume production: Focus on yield and disease resistance in Bambara groundnut[J]. Front Sustain Food Syst, 6: 922156.
REIS V M, ALVES B J R, HARTMANN A, et al, 2020. Beneficial microorganisms in agriculture: The future of plant growth-promoting rhizobacteria[J]. Plant Soil, 451(1): 1-3.
SEDDIGH S, KIANI L, TAFAGHODINIA B, et al, 2014. Using aerated compost tea in comparison with a chemical pesticide for controlling rose powdery mildew[J]. Arch Phytopathol Plant Prot, 47(6): 658-664.
UPADHYAY S K, CHAUHAN P K, 2022. Optimization of eco-friendly amendments as sustainable asset for salt-tolerant plant growth-promoting bacteria mediated maize (Zea mays L.) plant growth, Na uptake reduction and saline soil restoration[J]. Environ Res, 211: 113081.
ZENG Q, DING X, WANG J, et al, 2022. Insight into soil nitrogen and phosphorus availability and agricultural sustainability by plant growth-promoting rhizobacteria[J]. Environ Sci Pollut Res, 29(30): 45089-45106.
0
浏览量
5
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构