1.中山大学中法核工程与技术学院,广东 珠海 519082
2.中国空气动力研究与发展中心计算空气动力研究所,四川 绵阳 621000
苏庆吉(1997年生),男;研究方向:计算流体力学;E-mail:suqj5@mail2.sysu.edu.cn
李万爱(1985年生),男;研究方向:计算流体力学;E-mail:liwai@mail.sysu.edu.cn
纸质出版日期:2023-07-25,
网络出版日期:2023-04-10,
收稿日期:2023-01-16,
录用日期:2023-02-27
扫 描 看 全 文
苏庆吉,李万爱,刘骁.基于有限元的流固共轭传热程序开发验证[J].中山大学学报(自然科学版),2023,62(04):108-115.
SU Qingji,LI Wanai,LIU Xiao.Development and verification of conjugate heat transfer program based on finite element method[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(04):108-115.
苏庆吉,李万爱,刘骁.基于有限元的流固共轭传热程序开发验证[J].中山大学学报(自然科学版),2023,62(04):108-115. DOI: 10.13471/j.cnki.acta.snus.2023E007.
SU Qingji,LI Wanai,LIU Xiao.Development and verification of conjugate heat transfer program based on finite element method[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(04):108-115. DOI: 10.13471/j.cnki.acta.snus.2023E007.
为实现对共轭传热问题的仿真研究,本文基于有限元算法在MOOSE平台下开发一套用于流固共轭传热问题的计算程序。该程序采用传统连续伽辽金有限元法求解固体区域的结构传热问题,引入SUPG/PSPG稳定算法以解决流体对流-扩散方程中因对流占主导造成的振荡问题以及速度压力失耦问题,采用
k
-
ω
湍流模型进行湍流流动求解。对于全场的共轭传热问题,程序采用全耦合隐式格式进行求解。通过与文献中实验及理论结果对比,证明了该程序对于基本流动以及共轭传热问题计算的正确性。研究结果表明,程序计算结果与实验数据、DNS等结果表现出良好的一致性。本研究开发的程序具备不可压流动换热、固体传热、共轭传热等问题的计算能力。
In order to simulate the conjugate heat transfer problem; a calculation program for simulating fluid-solid conjugate heat transfer problems is developed on the MOOSE platform based on the finite element algorithm. The traditional continuous Galerkin finite element method is used to solve the structural heat transfer problem in the solid region. The SUPG/PSPG stabilization algorithm is introduced to solve the oscillation problem caused by convection-dominated equation of flow and the problem of velocity and pressure decoupling. The
k-ω
turbulence model is used to solve the turbulent flow. For the conjugate heat transfer problem in the whole field, the program uses a fully coupled implicit scheme to solve it. The program is validated by comparing with the experimental and theoretical results for basic flow and conjugate heat transfer cases. The results show that the calculation results are in good agreement with the experimental data and DNS results. Therefore, the program developed in this study has the ability to compute incompressible flow with heat transfer, solid heat transfer, conjugate heat transfer, and related problems.
共轭传热有限元方法多物理场耦合湍流模型验证与确认
conjugate heat transferfinite element methodmulti-physical field couplingturbulence modelingvalidation and verification
BROOKS A N, HUGHES T J R, 1982. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations[J]. Comput Methods Appl Mech Eng, 32(1/2/3): 199-259.
CARRIER A, 2021. Finite element implementation of k-ω SST with automatic wall treatment and adjoint-based mesh adaptation[J]. Int J Numer Methods Fluids, 93(3): 703-719.
CHEN X, HAN P, 2000. A note on the solution of conjugate heat transfer problems using SIMPLE-like algorithms[J]. Int J Heat Fluid Flow, 21(4): 463-467.
CHENG X, TAK N I, 2006. Investigation on turbulent heat transfer to lead–bismuth eutectic flows in circular tubes for nuclear applications[J]. Nucl Eng Des, 236(4): 385-393.
CONG T, ZHANG R, WANG B, et al, 2022. Single-phase flow in helical cruciform fuel assembly with conjugate heat transfer[J]. Prog Nucl Energy, 147: 104199.
DRIVER D M, SEEGMILLER H L, 1985. Features of a reattaching turbulent shear layer in divergent channel flow[J]. AIAA J, 23(2): 163-171.
HUGHES T J R, FRANCA L P, BALESTRA M, 1986a. A new finite element formulation for computational fluid dynamics: V. Circumventing the babuška-brezzi condition: A stable Petrov-Galerkin formulation of the stokes problem accommodating equal-order interpolations[J]. Comput Methods Appl Mech Eng, 59(1): 85-99.
HUGHES T J R, MALLET M, 1986b. A new finite element formulation for computational fluid dynamics: Ⅲ. The generalized streamline operator for multidimensional advective-diffusive systems[J]. Comput Methods Appl Mech Eng, 58(3): 305-328.
JOSHI V, JAIMAN R K, 2017. A positivity preserving variational method for multi-dimensional convection-diffusion-reaction equation[J]. J Comput Phys, 339: 247-284.
LEFHALM C H, TAK N I, PIECHA H, et al, 2004. Turbulent heavy liquid metal heat transfer along a heated rod in an annular cavity[J]. J Nucl Mater, 335(2): 280-285.
LINDSAY A, STOGNER R, GASTON D, et al, 2021. Automatic differentiation in MetaPhysicL and its applications in MOOSE[J]. Nucl Technol, 207(7): 905-922.
MALATIP A, WANSOPHARK N, DECHAUMPHAI P, 2006. Combined Streamline Upwind Petrov Galerkin method and segregated finite element algorithm for conjugate heat transfer problems[J]. J Mech Sci Technol, 20(10): 1741-1752.
PERMANN C J, GASTON D R, ANDRŠ D, et al, 2020. MOOSE: Enabling massively parallel multiphysics simulation[J]. SoftwareX, 11: 100430.
PETERSON J W, LINDSAY A D, KONG F, 2018. Overview of the incompressible Navier–Stokes simulation capabilities in the MOOSE framework[J]. Adv Eng Softw, 119: 68-92.
RADENAC E, GRESSIER J, MILLAN P, 2014. Methodology of numerical coupling for transient conjugate heat transfer[J]. Comput Fluids, 100: 95-107.
TEZDUYAR T E, 1991. Stabilized finite element formulations for incompressible flow computations[J]. Adv Appl Mech, 28: 1-44.
TEZDUYAR T E, MITTAL S, RAY S E, et al, 1992. Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements[J]. Comput Methods Appl Mech Eng, 95(2): 221-242.
TEZDUYAR T, SATHE S, 2003. Stabilization parameters in SUPG and PSPG formulations[J]. J Comput Appl Math, 4(1): 71-88.
VEERARAGAVAN A, BERI J, GOLLAN R J, 2016. Use of the method of manufactured solutions for the verification of conjugate heat transfer solvers[J]. J Comput Phys, 307: 308-320.
WANSOPHARK N, MALATIP A, DECHAUMPHAI P, 2005. Streamline upwind finite element method for conjugate heat transfer problems[J]. Acta Mech Sinica, 21(5): 436-443.
WU X, MOIN P, 2009. Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer[J]. J Fluid Mech, 630: 5-41.
ZENG Y, MING P, LI F, et al, 2022. Thermal hydraulic characteristics of spiral cross rod bundles in a lead-bismuth-cooled fast reactor[J]. Ann Nucl Energy, 167: 108850.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构