1.中山大学环境科学与工程学院 / 广东省环境污染控制与修复技术重点实验室 / 南方海洋科学与工程广东省实验室(珠海),广东 广州 510006
2.江门市自然资源局,广东 江门 529000
3.中山大学海洋科学学院,广东 珠海 519082
彭逸生(1979年生),男;研究方向:红树林生态功能及其修复、外来红树植物监测和控制;E-mail:pyish@mail.sysu.edu.cn
杨玉婷(2000年生),女;研究方向:红树林大型底栖动物及微生物生态功能;E-mail:yangyt39@mail2.sysu.edu.cn
何姿莹(1988年生),女;研究方向:红树林根系生物学及地下水碳循环动态;E-mail: heziying3@mail.sysu.edu.cn
纸质出版日期:2023-03-25,
网络出版日期:2023-03-01,
收稿日期:2022-12-31,
录用日期:2023-01-19
扫 描 看 全 文
彭逸生,杨玉婷,梁晋等.大型底栖动物扰动对红树林微生物群落的影响[J].中山大学学报(自然科学版),2023,62(02):17-27.
PENG Yisheng,YANG Yuting,LIANG Jin,et al.Effects of microbenthic bioturbation on microbial community in mangroves[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(02):17-27.
彭逸生,杨玉婷,梁晋等.大型底栖动物扰动对红树林微生物群落的影响[J].中山大学学报(自然科学版),2023,62(02):17-27. DOI: 10.13471/j.cnki.acta.snus.2023E002.
PENG Yisheng,YANG Yuting,LIANG Jin,et al.Effects of microbenthic bioturbation on microbial community in mangroves[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(02):17-27. DOI: 10.13471/j.cnki.acta.snus.2023E002.
大型底栖动物的生物扰动作用是促进红树林生态系统物质转化和能量流动的重要过程。大型底栖动物可以改变沉积物理化性质,驱动微生物群落结构组成和功能,对红树林中的生物地球化学循环过程具有重要意义。本文聚焦红树林大型底栖动物生物扰动和其对微生物群落、微生物介导的生物地球化学循环影响的研究现状,分别综述了大型底栖动物和微生物的时空分布格局和影响因素,探讨了大型底栖动物扰动对红树林微生物生态功能调控的物理和化学关联,展望了大型底栖动物-微生物-红树林在群落组成、互作机制和生态功能上的研究前景。
Macrobenthic bioturbation is a key process to facilitate material transportation and energy flow in mangrove ecosystem. Macrobenthos can modify the physicochemical properties of sediments, and drive the composition and function of microbial community, which is of great significance to the biogeochemical cycle in mangrove. This article focused on the current status of the studies on macrobenthic bioturbation and its effects on microorganism communities, and the biogeochemical cycle mediated by microorganisms in mangrove. We respectively reviewed the spatial and temporal distribution patterns and their drivers of macrobenthos and microorganisms, and discussed the physical and chemical linkage between macrobenthic bioturbation and microbial ecological functionalities. The perspectives of community composition, interactive mechanism and ecological functionalities among macrobenthos, microbiome and mangrove has also been considered.
红树林大型底栖动物微生物群落生物扰动生物地球化学循环
mangrovemacrobenthosmicrobial communitybioturbationbiogeochemical cycle
董俊德,黄小芳,龙爱民,等, 2022. 红树林固氮微生物及其生态功能研究进展[J/OL]. 热带海洋学报:1-11. (2022-08-18). https://kns.cnki.net/kcms/detail/44.1500.P.20220817.1252.002.htmlhttps://kns.cnki.net/kcms/detail/44.1500.P.20220817.1252.002.html.
方安琪,贺志理,王成, 等, 2020.红树林沉积物中微生物驱动硫循环研究进展[J].微生物学报, 60(1):13-25.
李亚芳,杜飞雁,王亮根,等, 2018. 底质类型对三亚湾潮间带大型底栖动物生态功能的影响[J]. 水产学报, 42(10): 1559-1571.
林娜,郭楚玲,郭延萍,等, 2012. 红树林湿地中好氧-厌氧反硝化菌脱氮特性及其种群结构分析[J]. 环境科学学报, 32(1): 173-181.
张弛,王树功,郑耀辉,等, 2010. 生物扰动对红树林沉积物中AVS和重金属迁移转化的影响[J]. 生态学报, 30(11): 3037-3045.
张攀,谢先军,黎清华,等, 2022. 东寨港红树林沉积物中微生物群落结构特征及其对环境的响应[J]. 地球科学, 47(3): 1122-1135.
赵华显,阎冰,徐悦,等, 2020. 北部湾红树林沉积物中微生物群落结构的时空变化分析[J].基因组学与应用生物学,39(5):2161-2169.
ADACHI K, TORIYAMA K, AZEKURA T, et al, 2012. Potent cellulase activity in the hepatopancreas of mangrove crabs[J]. Fish Sci, 78(6): 1309-1314.
AGUSTO L E, FRATINI S, JIMENEZ P J, et al, 2021. Structural characteristics of crab burrows in Hong Kong mangrove forests and their role in ecosystem engineering[J]. Estuar Coast Shelf Sci, 248: 106973.
AGUSTO L E, QIN G, THIBODEAU B, et al, 2022. Fiddling with the blue carbon: Fiddler crab burrows enhance CO2 and CH4 efflux in saltmarsh[J]. Ecol Indic, 144: 109538.
AL-KHAYAT J A, GIRALDES B W, 2020. Burrowing crabs in arid mangrove forests on the southwestern Arabian Gulf: Ecological and biogeographical considerations[J]. Reg Stud Mar Sci, 39: 101416.
AN Z, GAO D, CHEN F, et al, 2021. Crab bioturbation alters nitrogen cycling and promotes nitrous oxide emission in intertidal wetlands: Influence and microbial mechanism[J]. Sci Total Environ, 797: 149176.
AN Z, ZHENG Y, HOU L, et al, 2022. Aggravation of nitrous oxide emissions driven by burrowing crab activities in intertidal marsh soils: Mechanisms and environmental implications[J]. Soil Biol Biochem, 171: 108732.
JrARAÚJO J M C, FERREIRA T O, SUAREZ-ABELENDA M, et al, 2016. The role of bioturbation by Ucides cordatus crab in the fractionation and bioavailability of trace metals in tropical semiarid mangroves[J]. Mar Pollut Bull, 111(1/2): 194-202.
JrARAÚJO J M C, OTERO X L, MARQUES A G B, et al, 2012. Selective geochemistry of iron in mangrove soils in a semiarid tropical climate: Effects of the burrowing activity of the crabs Ucides cordatus and Uca maracoani[J]. Geo-Mar Lett, 32(4): 289-300.
ARNAUD M, BAIRD A J, MORRIS P J, et al, 2022. The effect of crab burrows on soil-water dynamics in mangroves[J]. Hydrol Process, 36(3): e14522.
BARTOLINI F, CIMÒ F, FUSI M, et al, 2011. The effect of sewage discharge on the ecosystem engineering activities of two east African fiddler crab species: Consequences for mangrove ecosystem functioning[J]. Mar Environ Res, 71(1): 53-61.
BASAK P, PRAMANIK A, ROY R, et al, 2015. Cataloguing the bacterial diversity of the Sundarbans mangrove, India in the light of metagenomics[J]. Genom Data, 4: 90-92.
BÉZIAT N S, DUPERRON S, HALARY S, et al, 2021. Bacterial ectosymbionts colonizing gills of two Caribbean mangrove crabs[J]. Symbiosis, 85(1): 105-114.
BOOTH J M, FUSI M, MARASCO R, et al, 2019. Fiddler crab bioturbation determines consistent changes in bacterial communities across contrasting environmental conditions[J]. Sci Rep, 9(1): 3749.
CAI M, YIN X, TANG X, et al, 2022. Metatranscriptomics reveals different features of methanogenic Archaea among global vegetated coastal ecosystems[J]. Sci Total Environ, 802: 149848.
CANNICCI S, FUSI M, CIMÓ F, et al, 2018. Interference competition as a key determinant for spatial distribution of mangrove crabs[J]. BMC Ecol, 18(1): 8.
CARDINI U, BARTOLI M, LÜCKER S, et al, 2019. Chemosymbiotic bivalves contribute to the nitrogen budget of seagrass ecosystems[J]. ISME J, 13(12): 3131-3134.
CHECON H H, CORTE G N, SILVA C F, et al, 2017. Mangrove vegetation decreases density but does not affect species richness and trophic structure of intertidal polychaete assemblages[J]. Hydrobiologia, 795(1): 169-179.
CHEN X, ZHOU Z, HE Q, et al, 2022. Role of abiotic drivers on crab burrow distribution in a saltmarsh wetland[J]. Front Mar Sci, 9: 1040308.
CORREIA R R S, GUIMARÃES J R D, 2016. Impacts of crab bioturbation and local pollution on sulfate reduction, Hg distribution and methylation in mangrove sediments, Rio de Janeiro, Brazil[J]. Mar Pollut Bull, 109(1): 453-460.
CUELLAR-GEMPELER C, LEIBOLD M A, 2018. Multiple colonist pools shape fiddler crab-associated bacterial communities[J]. ISME J, 12(3): 825-837.
DELFAN N, SHOJAEI M G, NADERLOO R, 2021. Patterns of structural and functional diversity of macrofaunal communities in a subtropical mangrove ecosystem[J]. Estuar Coast Shelf Sci, 252: 107288.
DO CARMO LINHARES D, SAIA F T, DUARTE R T D, et al, 2021. Methanotrophic community detected by DNA-SIP at Bertioga’s mangrove area, southeast Brazil[J]. Microb Ecol, 81(4): 954-964.
DUBILIER N, BERGIN C, LOTT C, 2008. Symbiotic diversity in marine animals: The art of harnessing chemosynthesis[J]. Nat Rev Microbiol, 6(10): 725-740.
EGAWA R, SHARMA S, NADAOKA K, et al, 2021. Burrow dynamics of crabs in subtropical estuarine mangrove forest[J]. Estuar Coast Shelf Sci, 252: 107244.
FREITAS R F, BRAUKO K M, PAGLIOSA P R, 2021. Relationships between mangrove root system and benthic macrofauna distribution[J]. Hydrobiologia, 848(6): 1391-1407.
FRIESEN S D, DUNN C, FREEMAN C, 2018. Decomposition as a regulator of carbon accretion in mangroves: A review[J]. Ecol Eng, 114: 173-178.
FUSI M, BOOTH J M, MARASCO R, et al, 2022. Bioturbation intensity modifies the sediment microbiome and biochemistry and supports plant growth in an arid mangrove system[J]. Microbiol Spectr, 10(3): e0111722.
GARUGLIERI E, BOOTH J M, FUSI M, et al, 2022. Morphological characteristics and abundance of prokaryotes associated with gills in mangrove brachyuran crabs living along a tidal gradient[J]. PLoS One, 17(4): e0266977.
GILLIS L G, SNAVELY E, LOVELOCK C, et al, 2019. Effects of crab burrows on sediment characteristics in a Ceriops australis-dominated mangrove forest[J]. Estuar Coast Shelf Sci, 218: 334-339.
GONCALVES REIS C R, NARDOTO G B, OLIVEIRA R S. 2017. Global overview on nitrogen dynamics inmangroves and consequences of increasing nitrogen availability for these systems [J] . Plant Soil, 410(1): 1-19.
GONG B, CAO H, PENG C, et al, 2019. High-throughput sequencing and analysis of microbial communities in the mangrove swamps along the coast of Beibu Gulf in Guangxi, China[J]. Sci Rep, 9(1): 9377.
HAJIALIZADEH P, SAFAIE M, NADERLOO R, et al, 2020. Species composition and functional traits of macrofauna in different mangrove habitats in the Persian Gulf[J]. Front Mar Sci, 7: 575480.
HE Q, CUI B, 2015. Multiple mechanisms sustain a plant-animal facilitation on a coastal ecotone[J]. Sci Rep, 5(1): 8612.
HUANG X, FENG J, DONG J, et al, 2022b. Spartina alterniflora invasion and mangrove restoration alter diversity and composition of sediment diazotrophic community[J]. Appl Soil Ecol, 177: 104519.
HUANG X, YANG Q, FENG J, et al, 2022a. Introduction of exotic species Sonneratia apetala alters diazotrophic community and stimulates nitrogen fixation in mangrove sediments[J]. Ecol Indic, 142: 109179.
KAWAIDA S, NANJO K, KANAI T, et al. 2017. Microhabitat differences in crab assemblage structures in a subtropical mangrove estuary on Iriomote Island, southern Japan[J]. Fish Sci, 83(6): 1007-1017.
KRISTENSEN E, 2008. Mangrove crabs as ecosystem engineers; with emphasis on sediment processes[J]. J Sea Res, 59(1/2): 30-43.
KRISTENSEN E, ALONGI D M, 2006. Control by fiddler crabs (Uca vocans) and plant roots (Avicennia marina) on carbon, iron, and sulfur biogeochemistry in mangrove sediment[J]. Limnol Oceanogr, 51(4): 1557-1571.
KRISTENSEN E, PENHA-LOPES G, DELEFOSSE M, et al, 2012. What is bioturbation? The need for a precise definition for fauna in aquatic sciences[J]. Mar Ecol Prog Ser, 446: 285-302.
LEE C Y, LEE S Y, 2022. Widespread occurrence of endogenous cellulase production and glycosyl hydrolase in grapsoid crabs along the land-sea transition indicates high potential for mineralisation of mangrove production[J]. Front Mar Sci, 9: 1002502.
LEE S Y, 1997. Potential trophic importance of the faecal material of the mangrove sesarmine crab Sesarma messa[J]. Mar Ecol Prog Ser, 159: 275-284.
LEE S Y, 2008. Mangrove macrobenthos: Assemblages, services, and linkages[J]. J Sea Res, 59(1/2): 16-29.
LEOVILLE A, LAGARDE R, GRONDIN H, et al, 2021. Influence of environmental conditions on the distribution of burrows of the mud crab, Scylla serrata, in a fringing mangrove ecosystem[J]. Reg Stud Mar Sci, 43: 101684.
LI H, LI S, FAN S, et al, 2021. Profiling intestinal microbiota of Metaplax longipes and Helice japonica and their co-occurrence relationships with habitat microbes[J]. Sci Rep, 11(1): 21217.
LI P, LIU J, BAI J, et al, 2022. Community structure of benthic macrofauna and the ecological quality of mangrove wetlands in Hainan, China[J]. Front Mar Sci, 9: 861718.
LI S, CUI B, XIE T, et al, 2018. What drives the distribution of crab burrows in different habitats of intertidal salt marshes, Yellow River Delta, China[J]. Ecol Indic, 92: 99-106.
LIAO Y, SHOU L, TANG Y, et al, 2018. Influence of two non-indigenous plants on intertidal macrobenthic communities in Ximen Island Special Marine Protected Area, China[J]. Ecol Eng, 112: 96-104.
LIN J, HE X, WANG J, et al, 2016. Macrobenthic diversity and seasonal changes in the mangrove swamp of Luoyangjiang Estuary, Fujian Province[J]. Biodivers Sci, 24(7): 791-801.
LIU C, XIA J, CUI Q, et al, 2022. Crab bioturbation affects competition between microbial nitrogen removal and retention in estuarine and coastal wetlands[J]. Environ Res, 215: 114280.
LIU Y, REIBLE D, HUSSAIN F, et al, 2019. Role of bioroughness, bioirrigation, and turbulence on oxygen dynamics at the sediment-water interface[J]. Water Resour Res, 55(10): 8061-8075.
LU K, YANG Q, JIANG Y, et al, 2022. Changes in temporal dynamics and factors influencing the environment of the bacterial community in mangrove rhizosphere sediments in Hainan[J]. Sustainability, 14(12): 7415.
MAI Z, YE M, WANG Y, et al, 2021. Characteristics of microbial community and function with the succession of mangroves[J]. Front Microbiol, 12: 764974.
MARIANO D L S, BARROS F, 2015. Intertidal benthic macrofaunal assemblages: Changes in structure along entire tropical estuarine salinity gradients[J]. J Mar Biol Ass, 95(1): 5-15.
MEIJER K J, EL-HACEN E H M, GOVERS L L, et al, 2021. Mangrove-mudflat connectivity shapes benthic communities in a tropical intertidal system[J]. Ecol Indic, 130: 108030.
MICHAUD E, ALLER R C, ZHU Q, et al, 2021. Density and size-dependent bioturbation effects of the infaunal polychaete Nephtys incisa on sediment biogeochemistry and solute exchange[J]. J Mar Res, 79(4): 181-220.
MIN W W, KATHIRESAN K, 2021. Burrow morphologies, crab characteristics and soil properties in different seasons across intertidal areas of a restored mangrove forest[J]. J Sea Res, 177: 102111.
NEROT C, MEZIANE T, PROVOST-GOVRICH A, et al, 2009. Role of grapsid crabs, Parasesarma erythrodactyla, in entry of mangrove leaves into an estuarine food web: A mesocosm study[J]. Mar Biol, 156(11): 2343-2352.
NIE L, LI Y, HOU Y, et al, 2021. Dynamics of organic carbon under bioturbation by mud crabs (Macrophthalmus japonicus) and clamworms (Perinereis aibuhitensis) in an estuary ecosystem[J]. J Exp Mar Biol Ecol, 534: 151474.
NOBBS M, BLAMIRES S J, 2015. Spatiotemporal distribution and abundance of mangrove ecosystem engineers: Burrowing crabs around canopy gaps[J]. Ecosphere, 6(5): art84.
PADHY S R, BHATTACHARYYA P, NAYAK S K, et al, 2021. A unique bacterial and archaeal diversity make mangrove a green production system compared to rice in wetland ecology: A metagenomic approach[J]. Sci Total Environ, 781: 146713.
PALIT K, RATH S, CHATTERJEE S, et al. 2022. Microbial diversity and ecological interactions of microorganisms in the mangrove ecosystem: Threats, vulnerability, and adaptations[J]. Environ Sci Pollut Res Int, 29(22): 32467-32512.
PAN F, XIAO K, GUO Z, et al, 2022. Effects of fiddler crab bioturbation on the geochemical migration and bioavailability of heavy metals in coastal wetlands[J]. J Hazard Mater, 437: 129380.
PAN S H, HO C W, LIN C W, et al, 2021. Differential response of macrobenthic abundance and community composition to mangrove vegetation[J]. Forests, 12(10): 1403.
PAPASPYROU S, GREGERSEN T, COX R P, et al, 2005. Sediment properties and bacterial community in burrows of the ghost shrimp Pestarella tyrrhena (Decapoda: Thalassinidea)[J]. Aquat Microb Ecol, 38(2): 181-190.
PEER N, MIRANDA N A, PERISSINOTTO R, 2019. Impact of fiddler crab activity on microphytobenthic communities in a South African mangrove forest[J]. Estuar Coast Shelf Sci, 227: 106332.
PENG Y S, ZHANG M, LEE S Y, 2017. Food availability and predation risk drive the distributional patterns of two pulmonate gastropods in a mangrove-saltmarsh transitional habitat[J]. Mar Environ Res, 130: 21-29.
QASHQARI M S, GARCIAS-BONET N, FUSI M, et al, 2020. High temperature and crab density reduce atmospheric nitrogen fixation in Red Sea mangrove sediments[J]. Estuar Coast Shelf Sci, 232: 106487.
REIS C R G, NARDOTO G B, OLIVEIRA R S, 2017. Global overview on nitrogen dynamics in mangroves and consequences of increasing nitrogen availability for these systems[J]. Plant Soil, 410(1): 1-19.
SALIMI E, SAKHAEI N, NURINEZHAD M, et al, 2021. Composition, biomass and secondary production of the macrobenthic invertebrate assemblage in a mangrove forest in Nayband Bay, Persian Gulf[J]. Reg Stud Mar Sci, 42: 101636.
SARKER S, MASUD-UL-ALAM M, HOSSAIN M S, et al, 2021. A review of bioturbation and sediment organic geochemistry in mangroves[J]. Geol J, 56(5): 2439-2450.
SHIAU Y J, LIN Y T, YAM R S W, et al, 2021. Composition and activity of N2-fixing microorganisms in mangrove forest soils[J]. Forests, 12(7): 822.
TONGUNUNUI P, KURIYA Y, MURATA M, et al, 2021. Mangrove crab intestine and habitat sediment microbiomes cooperatively work on carbon and nitrogen cycling[J]. PLoS One, 16(12): e0261654.
TRINDADE-SILVA A E, MACHADO-FERREIRA E, SENRA M V X, et al, 2009. Physiological traits of the symbiotic bacterium Teredinibacter turnerae isolated from the mangrove shipworm Neoteredo reynei[J]. Genet Mol Biol, 32(3): 572-581.
VASQUEZ-CARDENAS D, QUINTANA C O, MEYSMAN F, et al, 2016. Species-specific effects of two bioturbating polychaetes on sediment chemoautotrophic bacteria[J]. Mar Ecol Prog Ser, 549: 55-68.
WALTON M E, LE VAY L, LEBATA J H, et al, 2006. Seasonal abundance, distribution and recruitment of mud crabs (Scylla spp.) in replanted mangroves[J]. Estuar Coast Shelf Sci, 66(3/4): 493-500.
WANG A J, YE X, DU Y F, et al, 2017. Hydrodynamic and biological mechanisms for variations in near-bed suspended sediment concentrations in a Spartina alterniflora marsh-a case study of Luoyuan Bay, China[J]. Estuaries Coasts, 40(6): 1540-1550.
WANG J Q, BERTNESS M D, LI B, et al, 2015. Plant effects on burrowing crab morphology in a Chinese salt marsh: Native vs. exotic plants[J]. Ecol Eng, 74: 376-384.
WANG M, GAO X, WANG W, 2014. Differences in burrow morphology of crabs between Spartina alterniflora marsh and mangrove habitats[J]. Ecol Eng, 69: 213-219.
WANG X, LI Y, GUAN B, et al, 2020. Beneficial effects of crab burrowing on the surface soil properties of newly formed mudflats in the Yellow River Delta[J]. Ecohydrol Hydrobiol, 20(4): 548-555.
WERRY J, LEE S Y, 2005. Grapsid crabs mediate link between mangrove litter production and estuarine planktonic food chains[J]. Mar Ecol Prog Ser, 293: 165-176.
WU P, XIONG X, XU Z, et al, 2016. Bacterial communities in the rhizospheres of three mangrove tree species from Beilun Estuary, China[J]. PLoS One, 11(10): e0164082.
WUNDERLICH A C, PINHEIRO M A A, 2013. Mangrove habitat partitioning by Ucides cordatus (Ucididae): Effects of the degree of tidal flooding and tree-species composition during its life cycle[J]. Helgol Mar Res, 67(2): 279-289.
XIAO K, WILSON A M, LI H, et al, 2021. Large CO2 release and tidal flushing in salt marsh crab burrows reduce the potential for blue carbon sequestration[J]. Limnol Oceanogr, 66(1): 14-29.
YANG Z, PENG C, CAO H, et al, 2022. Microbial functional assemblages predicted by the FAPROTAX analysis are impacted by physicochemical properties, but C, N and S cycling genes are not in mangrove soil in the Beibu Gulf, China[J]. Ecol Indic, 139: 108887.
YU C, XIE S, SONG Z, et al, 2021. Biogeochemical cycling of iron (hydr-)oxides and its impact on organic carbon turnover in coastal wetlands: A global synthesis and perspective[J]. Earth Sci Rev, 218: 103658.
YU X, YANG X, WU Y, et al, 2020. Sonneratia apetala introduction alters methane cycling microbial communities and increases methane emissions in mangrove ecosystems[J]. Soil Biol Biochem, 144: 107775.
ZHANG M P, DAI P L, LIN X L, et al, 2020. Nitrogen loss by anaerobic ammonium oxidation in a mangrove wetland of the Zhangjiang Estuary, China[J]. Sci Total Environ, 698: 134291.
ZHOU Z, MENG H, LIU Y, et al, 2017. Stratified bacterial and archaeal community in mangrove and intertidal wetland mudflats revealed by high throughput 16S rRNA gene sequencing[J]. Front Microbiol, 8: 2148.
ZHU P, WANG Y, SHI T, et al, 2018. Intertidal zonation affects diversity and functional potentials of bacteria in surface sediments: A case study of the Golden Bay mangrove, China[J]. Appl Soil Ecol, 130: 159-168.
ZHUANG W, YU X L, HU R W, et al, 2020. Diversity, function and assembly of mangrove root-associated microbial communities at a continuous fine-scale[J]. NPJ Biof Microb, 6(1): 52.
ZILIUS M, BONAGLIA S, BROMAN E, et al, 2020. N2 fixation dominates nitrogen cycling in a mangrove fiddler crab holobiont[J]. Sci Rep, 10(1): 13966.
ZOLKHIFLEE N, YAHYA K, SHUIB S, et al, 2021. Intertidal zone preferences of fiddler crabs in tropical mangroves reflect species specific selection across multiple spatial and temporal scales[J]. Reg Stud Mar Sci, 48: 101994.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构