1.中山大学环境科学与工程学院 / 广东省环境污染控制与修复技术重点实验室 / 南方海洋科学与工程广东省实验室(珠海),广东 广州 510006
2.江门市地质与海洋防灾监测站,广东 江门 529000
3.广东省台山市林业局,广东 江门 529000
4.中山大学海洋科学学院,广东 珠海 519082
彭逸生(1979年生),男;研究方向:红树林生态功能及其修复、外来红树植物监测和控制;E-mail:pyish@mail.sysu.edu.cn;
庄雪茵(1999年生),女;研究方向:红树林恢复及碳汇功能;E-mail:zhuangxy7@mail2.sysu.edu.cn
何姿莹(1988年生),女;研究方向:红树林根系生物学及地下水碳循环动态;E-mail:heziying3@mail.sysu.edu.cn
纸质出版日期:2023-03-25,
网络出版日期:2023-03-02,
收稿日期:2022-12-31,
录用日期:2023-02-07
扫 描 看 全 文
彭逸生,庄雪茵,赵丽丽等.树种选择和滩地高程对红树林修复早期系统碳储量的影响[J].中山大学学报(自然科学版),2023,62(02):37-46.
PENG Yisheng,ZHUANG Xueyin,ZHAO Lili,et al.Influence of species choice and tidal flat elevation on the carbon sequestration of early mangrove restoration[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(02):37-46.
彭逸生,庄雪茵,赵丽丽等.树种选择和滩地高程对红树林修复早期系统碳储量的影响[J].中山大学学报(自然科学版),2023,62(02):37-46. DOI: 10.13471/j.cnki.acta.snus.2023E001.
PENG Yisheng,ZHUANG Xueyin,ZHAO Lili,et al.Influence of species choice and tidal flat elevation on the carbon sequestration of early mangrove restoration[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(02):37-46. DOI: 10.13471/j.cnki.acta.snus.2023E001.
发展红树林生态系统的高效碳汇能力是我国实现碳中和的有效方法之一,而红树林的固碳效率受多方面因素的影响。本研究探究了树种及滩地高程条件对红树林生态修复工程早期的固碳效果的影响,为基于碳汇功能的红树林生态修复工程选址、选种提供参考。选取广东省汕头市牛田洋红树林生态修复工程中3个种植块为研究对象,分别为高潮位区桐花树 (HAc,high-intertidal
Aegiceras corniculatum
)、低潮位区无瓣海桑 (LSa,low-intertidal
Sonneratia apetala
)和高潮位区无瓣海桑 (HSa,high-intertidal
S
.
apetala
)。在造林2,3 a后,分别测定及估算植物生长指标、生物量、碳储量以及表层土壤(0~60 cm)的理化性质指标及碳储量等参数,分析树种与滩地高程对红树林群落储碳功能的影响。结果表明,红树林定植发育过程带来了土壤的酸化、盐化及养分(TOC、TN、TP)积累,同时碳的外源供给比例随着造林时间增加而增加。造林3 a后,在相同潮位条件下,相比外来树种无瓣海桑[植物碳密度(16.00±3.76) t·hm
-2
;系统碳密度(48.54±2.38 t·hm
-2
)],乡土树种桐花树凭借较高的植株密度获得了更高的单位面积碳储量[植物碳密度(36.16±2.35) t·hm
-2
;系统碳密度(70.14±3.15) t·hm
-2
]。而淹水胁迫促进了无瓣海桑幼苗生物量及碳储量的积累,长时间的潮汐冲刷则降低了土壤有机碳的数量和稳定性。因此,低潮位无瓣海桑群落的碳密度[植物碳密度(34.59±8.85) t·hm
-2
;系统碳密度(61.03±2.57) t·hm
-2
]显著高于高潮位,但土壤总有机碳含量及颗粒态碳含量较低。
Developing the efficient carbon sequestration capability of the mangrove ecosystem is one of the fundamental methods for realizing carbon neutralization in China. However, the efficiency of mangrove carbon sequestration is determined by various factors. This study investigated the effects of species choice and tidal flat elevation on carbon sequestration in the early stage of the mangrove ecological restoration program. It provided a certain reference for the site selection and species choice of mangrove ecological restoration based on carbon sink function. In this study, three mangrove plantations including high-intertidal
Aegiceras corniculatum
(HAc), low-intertidal
Sonneratia apetala
(LSa) and high-intertidal
S
.
apetala
(HSa) were selected from the ecological restoration program in Niutianyang, Shantou City, Guangdong Province. The plant growth, biomass, carbon storage as well as surface soils (0-60 cm) physical-chemical features were measured and estimated in the second and third years after afforestation to analyze the effects of species choice and tidal flat elevation on mangrove carbon storage. The results showed that the colonization of mangroves led to acidification and salinization as well as nutrient accumulation in soil, while the proportion of exogenous organic carbon supply increased with the extension of afforestation time. After 3 years of afforestation, the native species plantation HAc obtained higher carbon storage per unit area [plant carbon density (36.16±2.35) t·hm
-2
; system carbon density (70.14±3.15) t·hm
-2
] by virtue of higher plant density, compared to the exotic species plantation HSa [plant carbon density (16.00±3.76) t·hm
-2
; system carbon density (48.54±2.38) t·hm
-2
]. While inundation stress promoted the accumulation of biomass and carbon stock in
S. apetala
seedlings, prolonged tidal flushing reduced the quantity and stability of soil organic carbon. Therefore, the carbon density of LSa plantation [plant carbon density (34.59±8.85) t·hm
-2
; system carbon density (61.03±2.57) t·hm
-2
] was significantly higher than the HSa plantation, but the soil TOC and POC content were lower in deep tidal flat elevation zone.
生态修复碳储量红树林树种选择滩地高程
ecological restorationcarbon sequestrationmangrovespecies choicetidal flat elevation
陈鹭真, 王文卿, 林鹏, 2005. 潮汐淹水时间对秋茄幼苗生长的影响[J]. 海洋学报, 27(2): 141-147.
陈妙纯, 2007. 汕头市水文水环境特性分析[J]. 水利科技与经济, 13(8): 556-558.
陈小花, 陈宗铸, 雷金睿, 等, 2022. 东寨港红树林中不同群落区表层土壤有机碳及其活性组分含量[J]. 湿地科学, 20(4): 499-506.
陈玉军, 李婷, 朱立安, 等, 2022. 湛江红树林湿地不同淹水梯度下土壤养分及其化学计量特征[J/OL]. 西北林学院学报, 1-11. (2022-10-09). https://kns.cnki.net/kcms/detail/61.1202.S.20221008.1107.002.htmlhttps://kns.cnki.net/kcms/detail/61.1202.S.20221008.1107.002.html.
高春, 胡杰龙, 颜葵, 等, 2017. 海南东寨港红树林土壤二氧化碳和甲烷排放通量研究[J]. 湿地科学, 15(3): 351-357.
高天伦, 管伟, 毛静, 等, 2017. 广东省雷州附城主要红树林群落碳储量及其影响因子[J]. 生态环境学报, 26(6): 985-990.
国家林业局,2016a. 森林土壤磷的测定: LY/T 1232—2015[S]. 北京: 中国标准出版社, 2016.
国家林业局,2016b. 森林土壤氮的测定: LY/T 1228—2015[S]. 北京: 中国标准出版社, 2016.
何斌源, 赖廷和, 陈剑锋, 等, 2007. 两种红树植物白骨壤(Avicennia marina)和桐花树(Aegiceras corniculatum)的耐淹性[J]. 生态学报, 27(3): 1130-1138.
胡慧蓉, 马焕成, 罗承德, 等, 2010. 森林土壤有机碳分组及其测定方法[J]. 土壤通报, 41(4): 1018-1024.
江淼华, 吕茂奎, 林伟盛, 等, 2018. 生态恢复对红壤侵蚀地土壤有机碳组成及稳定性的影响[J]. 生态学报, 38(13): 4861-4868.
江胜国, 2019. 国内土壤容重测定方法综述[J]. 湖北农业科学, 58(S2): 82-86, 91.
乐易迅, 胡敏杰, 肖琳, 等, 2022. 河口湿地红树林植被恢复对土壤养分动态的影响[J]. 水土保持学报, 36(3): 333-337.
陶玉华, 黄星, 王薛平, 等, 2020. 广西珍珠湾三种红树林林分土壤碳氮储量的研究[J]. 广西植物, 40(3): 285-292.
王绍强, 于贵瑞, 2008. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 28(8): 3937-3947.
王文卿, 石建斌, 陈鹭真, 2021. 中国红树林湿地保护与恢复战略研究[M]. 北京: 中国环境出版社: 6-11.
张乔民, 于红兵, 陈欣树, 等, 1997. 红树林生长带与潮汐水位关系的研究[J]. 生态学报, 17(3): 258-265.
中国林业科学研究院林业研究所, 1999a. 森林土壤pH值的测定: LY/T 1239—1999[S].
中国林业科学研究院林业研究所,1999b. 森林土壤有机质的测定及碳氮比的计算: LY/T 1237—1999[S].
中华人民共和国农业部, 2006. 土壤检测 第16部分:土壤水溶性盐总量的测定: NY/T 1121.16—2006[S].
ALONGI D M, 2012. Carbon sequestration in mangrove forests[J]. Carbon Manag, 3(3): 313-322.
ATWOOD T B, CONNOLLY R M, ALMAHASHEER H, et al, 2017. Global patterns in mangrove soil carbon stocks and losses[J]. Nat Clim Change, 7(7): 523-528.
BREITHAUPT J L, SMOAK J M, SMITH T J, et al, 2012. Organic carbon burial rates in mangrove sediments: Strengthening the global budget[J]. Global Biogeochem Cycles, 26(3): 1-11.
CHEN J, GAO M, CHEN G, et al, 2022a. Biomass accumulation and organic carbon stocks of Kandelia obovata mangrove vegetation under different simulated sea levels[J]. Acta Oceanol Sin, 41(8): 78-86.
CHEN J, HUANG Y, CHEN G, et al, 2022b. Effect of site elevation and soil depth on the biomass and carbon, nitrogen, and phosphorus stocks of roots in planted Kandelia obovata mangrove forests[J/OL]. Restor Ecol, [2022-04-25]. https://doi.org/10.1111/rec.13712https://doi.org/10.1111/rec.13712.
CHEN L, TAM N F Y, WANG W, et al, 2013. Significant niche overlap between native and exotic Sonneratia mangrove species along a continuum of varying inundation periods[J]. Estuar Coast Shelf Sci, 117: 22-28.
COHEN-SHACHAM E, ANDRADE A, DALTON J, et al, 2019. Core principles for successfully implementing and upscaling nature-based solutions[J]. Environ Sci Policy, 98: 20-29.
CRAGG S M, BECKHAM G T, BRUCE N C, et al, 2015. Lignocellulose degradation mechanisms across the tree of life[J]. Curr Opin Chem Biol, 29: 108-119.
DONATO D C, KAUFFMAN J B, MURDIYARSO D, et al, 2011. Mangroves among the most carbon-rich forests in the tropics[J]. Nat Geosci, 4(5): 293-297.
DUARTE C M, LOSADA I J, HENDRIKS I E, et al, 2013. The role of coastal plant communities for climate change mitigation and adaptation[J]. Nat Clim Change, 3(11): 961-968.
DUKE N C, BALL M C, ELLISON J C, 1998. Factors influencing biodiversity and distributional gradients in mangroves[J]. Glob Ecol Biogeogr Lett, 7(1): 27-47.
EDENHOFER O, PICHS-MADRUGA R, SOKONA Y, et al, 2014. IPCC, 2014: Climate change 2014: Mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Cambridge, New York: Cambridge University Press.
FAZLE RABBI S M, TIGHE M, COWIE A, et al, 2014. The relationships between land uses, soil management practices, and soil carbon fractions in South Eastern Australia[J]. Agric Ecosyst Environ, 197: 41-52.
HE Z, SUN H, PENG Y, et al, 2020. Colonization by native species enhances the carbon storage capacity of exotic mangrove monocultures[J]. Carbon Balance Manag, 15(1): 28.
HOGARTH P J,2007.The biology of mangroves and seagrasses[M]. 2nd ed. Oxford: Oxford University Press.
JIANG Z, GUAN W, XIONG Y, et al, 2019. Interactive effects of intertidal elevation and light level on early growth of five mangrove species under Sonneratia apetala Buch. Ham plantation canopy: Turning monocultures to mixed forests[J]. Forests, 10(2): 83.
KRISTENSEN E, BOUILLON S, DITTMAR T, et al, 2008. Organic carbon dynamics in mangrove ecosystems : A review[J]. Aquat Bot, 89(2): 201-219.
LEWIS R R, 2005. Ecological engineering for successful management and restoration of mangrove forests[J]. Ecol Eng, 24(4): 403-418.
LIU H, REN H, HUI D, et al, 2014. Carbon stocks and potential carbon storage in the mangrove forests of China[J]. J Environ Manag, 133: 86-93.
MISRA S, CHOUDHURY A, GHOSH A, et al, 1984. The role of hydrophobic substances in leaves in adaptation of plants to periodic submersion by tidal water in a mangrove ecosystem[J]. J Ecol, 72(2): 621.
POLIDORO B A, CARPENTER K E, COLLINS L, et al, 2010. The loss of species: Mangrove extinction risk and geographic areas of global concern[J]. PLoS One, 5(4): e10095.
RAHMAN M M, ZIMMER M, AHMED I, et al, 2021. Co-benefits of protecting mangroves for biodiversity conservation and carbon storage[J].Nat Commun, 12(1): 3875.
REN H, CHEN H, LI Z, et al, 2010. Biomass accumulation and carbon storage of four different aged Sonneratia apetala plantations in Southern China[J]. Plant and Soil, 327(1): 279-291.
ROBERTSON A I, ALONGI D M, 2016. Massive turnover rates of fine root detrital carbon in tropical Australian mangroves[J]. Oecologia, 180(3): 841-851.
SANDERS C J, MAHER D T, TAIT D R, et al, 2016. Are global mangrove carbon stocks driven by rainfall?[J]. J Geophys Res Biogeosci, 121(10): 2600-2609.
TAM N F Y, WONG Y S, LAN C Y, et al, 1995. Community structure and standing crop biomass of a mangrove forest in Futian Nature Reserve, Shenzhen, China[J]. Hydrobiologia, 295: 193-201.
TREVATHAN-TACKETT S M, SEYMOUR J R, NIELSEN D A, et al, 2017. Sediment anoxia limits microbial-driven seagrass carbon remineralization under warming conditions[J]. FEMS Microbiol Ecol, 93(6): 10.1093/femsec/fix033.
WANG X, XIAO X, XU X, 2021. Rebound in China's coastal wetlands following conservation and restoration[J]. Nat Sustain, 4(12): 1076-1083.
WU M, HE Z, FUNG S, et al, 2020. Species choice in mangrove reforestation may influence the quantity and quality of long-term carbon sequestration and storage[J]. Sci Total Environ, 714: 136742.
XIAO K, LI H, SHANANAN M, et al, 2019. Coastal water quality assessment and groundwater transport in a subtropical mangrove swamp in Daya Bay, China[J]. Sci Total Environ, 646: 1419-1432.
YUAN L, ZHANG J, SHEN C, et al, 2014.Quantification of soil organic carbon storage and turnover in two mangrove forests using dual carbon isotopic measurements[M]//Mangrove Ecosystems of Asia. New York: Springer: 257-271.
ZHANG Y, YU C, XIE J, et al, 2021. Comparison of fine root biomass and soil organic carbon stock between exotic and native mangrove[J]. CATENA, 204: 105423.
ZHANG Z, WANG Y, ZHU Y, et al, 2022. Carbon sequestration in soil and biomass under native and non-native mangrove ecosystems[J]. Plant Soil, 479(1): 61-76.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构