1.中山大学地球科学与工程学院,广东 珠海 519082
2.广东省地球动力作用与地质灾害重点实验室 / 南方海洋科学与工程广东省实验室(珠海), 广东 珠海 519082
刘锐鸿(1998年生),男;研究方向:岩石力学与二氧化碳封存;E-mail:liurh8@mail2.sysu.edu.cn
刘金锋(1985年生),男;研究方向:实验岩石力学;E-mail:Liujinf5@mail.sysu.edu.cn
纸质出版日期:2024-07-25,
网络出版日期:2024-04-24,
收稿日期:2023-07-06,
录用日期:2023-07-17
移动端阅览
刘锐鸿,刘金锋.海南北部玄武岩实时温度单轴拉-压强度试验研究[J].中山大学学报(自然科学版)(中英文),2024,63(04):19-28.
LIU Ruihong,LIU Jinfeng.Experimental study on real-time temperature uniaxial tensile-compression strength of basalts from the northern Hainan province[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(04):19-28.
刘锐鸿,刘金锋.海南北部玄武岩实时温度单轴拉-压强度试验研究[J].中山大学学报(自然科学版)(中英文),2024,63(04):19-28. DOI: 10.13471/j.cnki.acta.snus.2023D035.
LIU Ruihong,LIU Jinfeng.Experimental study on real-time temperature uniaxial tensile-compression strength of basalts from the northern Hainan province[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(04):19-28. DOI: 10.13471/j.cnki.acta.snus.2023D035.
我国海南北部玄武岩储量丰富且分布广泛,矿化碳封存潜力巨大。实时温度下玄武岩的力学特性对深部玄武岩碳封存工程实践具有重要意义。本文采用配备高温环境炉的MTS万能材料试验机,对取自海南北部晚新生代玄武岩样品(主要矿物为富铝辉石和钙长石),开展了实时温度条件(25~250 ℃)下的巴西劈裂和单轴压缩试验,探究实时温度对其强度与变形破坏特征的影响。巴西劈裂试验表明玄武岩样品的抗拉强度随温度下降,且优势破裂面明显:室温时约13 MPa,50 ℃时显著下降至约8 MPa,250 ℃时下降至约7 MPa。单轴压缩试验结果显示玄武岩样品的杨氏模量与泊松比分别为31.0~175.3 GPa和0.13~0.48,最大值均出现在100~150 ℃;抗压强度为77.5~159.5 MPa,随温度上升有微弱下降趋势,但离散性增大;破裂模式随温度升高由单斜面剪切趋向多斜面剪切,可能是由于温度导致抗拉强度降低,进而导致拉张微裂隙比例增加。综合分析表明,玄武岩样品在25~250 ℃条件下力学特性的温度依赖性较为复杂:抗拉强度随温度升高而下降;单轴压缩力学参数离散性增加但无显著温度依赖性。其温度依赖性的主控机制为裂纹扩展速率(裂纹扩展激活能)的温度依赖性,而非热损伤。本研究结果表明,地下玄武岩碳封存工业实践中,随着埋藏深度(温度)的增加,玄武岩抗拉强度显著降低可能增加固碳反应引发的膨胀致裂的可能性,有利于提高玄武岩固碳效率,但玄武岩压缩变形破裂过程对固碳效率的影响仍需深入研究。
The north part of Hainan Province has widely distributed,abundant basaltic rocks providing a great potential for carbon geological sequestration via mineralization. Engineering practice of carbon sequestration in subsurface basalt requests to understanding of the mechanical properties of basalt at real-time temperature. In this study,Brazilian splitting and uniaxial compression experiments were performed on late Cenozoic basalt samples (mainly minera
ls including Augite,Al-rich, and Anorthite) collected from northern Hainan Province under real-time temperature conditions of 25-250 ℃,to investigate the effects of temperature on the strength and failure characteristics of the basalt samples. The Brazilian splitting tests show that the tensile strength of the basalt samples reduced from ~13 MPa at room temperature to ~8 MPa at 50 ℃,and finally to ~7 MPa at 250 ℃,accompanied by a dominant fracture surface. The uniaxial compression experiments determine the Young's modulus and Poisson's ratio of 31.0-175.3 GPa and 0.13-0.48,respectively,having the maximum values at temperatures of 100-150 ℃. The compressive strength of 77.5-159.5 MPa decreases slightly with temperature but is associated with larger discreteness. The basalt samples upon uniaxial compression exhibited shear failure along a single plane at temperatures of 25-100 ℃,while shear failures along multi-planes at temperatures of 150-250 ℃. This may be attributed to the increase of the proportion of tensile microcracks upon temperature rise during the microcracking process. Combining the results from both experiments,the tensile strength reduction and the scattered uniaxial compression mechanical parameters observed at temperatures of 25-250 ℃ are likely dominated by the thermally activated rate process,rather than the thermal damage mechanism. From a perspective of temperature-dependent mechanical properties of the collected basalt samples,this study implies that deep burial depth (higher temperature) favors the carbonation reaction of basalt and CO
2
,as the reduction of tensile strength may accelerate the fracturing process to enhance the reactive surface between basalt and CO
2
-rich fluids. Nevertheless,complex deformation and failure mechanisms caused by temperature during in-situ subsurface carbon sequestration in basalt also need serious considerations in future studies.
海南玄武岩CO2地质封存破裂模式巴西劈裂抗拉强度
Hainan basaltcarbon geological sequestrationfailure modesBrazilian testtensile strength
陈琳,徐小丽,徐银花,2016. 温度与加载速率对岩石力学性质的影响[J].广西大学学报(自然科学版),41(1):170-177.
陈帅,石祥超,包恒,等,2022. 高温对玄武岩可钻性及微观结构影响的试验研究[J]. 地下空间与工程学报,18(6):1898-1905.
陈有亮,邵伟,周有成,2011. 高温作用后花岗岩力学性能试验研究[J]. 力学季刊,32(3):397-402.
段进超,唐春安,常旭,等,2006. 单轴压缩下含孔脆性材料的力学行为研究[J]. 岩土力学,27(8):1416-1420.
樊祺诚,孙谦,李霓,等,2004. 琼北火山活动分期与全新世岩浆演化[J]. 岩石学报,20(3):533-544.
方新宇,许金余,刘石,等,2016. 高温后花岗岩的劈裂试验及热损伤特性研究[J]. 岩石力学与工程学报,35(S1):2687-2694.
李博宇,彭文祥,王李昌,等,2022. 温度与化学作用下岩石物理力学性质研究进展[J]. 地质装备,23(2):33-37.
龙文国,林义华,石春,等,2006a. 海南岛北部更新世道堂组的重新厘定[J].地质通报,25(4):469-474.
龙文国,林义华,朱耀河,等,2006b. 海南岛北部第四纪早中更新世多文组的建立[J].地质通报,25(3):408-414.
罗生银,窦斌,田红,等,2020. 自然冷却后与实时高温下花岗岩物理力学性质对比试验研究[J]. 地学前缘,27(1):178-184.
彭俊,蔡明,荣冠,等,2015. 裂纹闭合应力及其岩石微裂纹损伤评价[J]. 岩石力学与工程学报,34(6):1091-1100.
平琦,吴明静,张欢,等,2019. 高温条件下砂岩动态力学特性试验研究[J]. 地下空间与工程学报,15(3):691-698.
石小蒙,2014. 琼北盆地地热田特征及流量-温度耦合模型研究[D]. 徐州:中国矿业大学.
汪斌,朱杰兵,严鹏,等,2012. 大理岩损伤强度的识别及基于损伤控制的参数演化规律[J]. 岩石力学与工程学报,31(S2):3967-3973.
汪然,朱大勇,姚华彦,等,2013. 温度对大理岩力学性能的影响[J]. 金属矿山,(4):49-53.
王鹏,许金余,刘石,等,2013. 高温下砂岩动态力学特性研究[J]. 兵工学报,34(2):203-208.
吴顺川,郭沛,张诗淮,等,2018. 基于巴西劈裂试验的花岗岩热损伤研究[J]. 岩石力学与工程学报,37(S2):3805-3816.
吴阳春,郤保平,王磊,等,2020.高温后花岗岩的物理力学特性试验研究[J].中南大学学报(自然科学版),51(1):193-203.
郤保平,吴阳春,王帅,等,2020.青海共和盆地花岗岩高温热损伤力学特性试验研究[J].岩石力学与工程学报,39(1):69-83.
夏圣亭,1997. 关于离散系数的探讨[J]. 工科数学,13(2):144-146.
熊大和,1982. 玄武岩的高温高压实验研究[J]. 岩矿测试,1(2):13-24.
熊良宵,虞利军,2018. 高温作用下和高温后岩石力学特性的研究进展[J]. 地质灾害与环境保护,29(1):76-82.
徐小丽,高峰,张志镇,等,2015. 实时高温下加载速率对花岗岩力学特性影响的试验研究[J]. 岩土力学,36(8):2184-2192.
徐小丽,2008. 温度载荷作用下花岗岩力学性质演化及其微观机制研究[D]. 徐州:中国矿业大学.
许锡昌,刘泉声,2000. 高温下花岗岩基本力学性质初步研究[J].岩土工程学报,(3):332-335.
张连英,茅献彪,卢爱红,2010. 高温作用下岩石力学性能的实验研究[J]. 中国科学:技术科学,40(2):157-162.
赵洪宝,尹光志,谌伦建,2009. 温度对砂岩损伤影响试验研究[J]. 岩石力学与工程学报,28(S1):2784-2788.
赵亚永,魏凯,周佳庆,等,2017. 三类岩石热损伤力学特性的试验研究与细观力学分析[J]. 岩石力学与工程学报,36(1):142-151.
中华人民共和国住房和城乡建设部,2013. 工程岩体试验方法标准:GB/T 50266—2013[S]. 北京:中国计划出版社.
BAZANT Z,PRAT P,1988. Effect of temperature and humidity on fracture energy of concrete[J]. ACI Mater J,85(4):262-271.
GODARD M,LUQUOT L,ANDREANI M,et al,2013. Incipient hydration of mantle lithosphere at ridges:A reactive percolation experiment[J].Earth Planet Sci Lett,371/372:92-102.
HATHEWAY A W,2009. The complete ISRM suggested methods for rock characterization,testing and monitoring,1974-2006[J]. Environ Eng Geosci,15(1):47-48.
KAM T Y,LU C D,1989. Thermal stress fracture analysis of brittle bodies[J]. Eng Fract Mech,32(5):827-832.
KELEMEN P B,MATTER J,STREIT E E,et al,2011. Rates and mechanisms of mineral carbonation in peridotite:Natural processes and recipes for enhanced,in situ CO2 capture and storage[J]. Annu Rev Earth Planet Sci,39:545-576.
KELEMEN P B,MATTER J, 2008. In situ carbonation of peridotite for CO2 storage[J]. Proc Natl Acad Sci USA,105(45):17295-17300.
KNOTT J F,1973. Fundamentals of fracture mechanics[M]. New York:Wiley.
LI D,WONG L N Y,2013. The Brazilian disc test for rock mechanics applications:Review and new insights[J]. Rock Mech Rock Eng,46(2):269-287.
MARTIN C D,1997. Seventeenth canadian geotechnical colloquium:The effect of cohesion loss and stress path on brittle rock strength[J]. Can Geotech J,34(5):698-725.
MATTER J M,BROECKER W S,GISLASON S R,et al,2011. The CarbFix Pilot Project—Storing carbon dioxide in basalt[J]. Energy Procedia,4:5579-5585.
McGRAIL B P,HO A M,REIDEL S P,et al,2003. Use and features of basalt formations for geologic sequestration[M]//Greenhouse Gas Control Technologies—6th International Conference. Amsterdam:Elsevier.1637-1640.
OKUBO S,PENG S,1977. A model for axial splitting under uniaxial compression[C]// ASME paper 77-Pet-73,Energy Technology Conf,Houston,USA.
SNÆBJÖRNSDÓTTIR S O,SIGFÚSSON B,MARIENI C,et al,2020. Carbon dioxide storage through mineral carbonation[J]. Nat Rev Earth Environ,1:90-102.
THOULESS M D,HSUEH C H,EVANS A G,1983. A damage model of creep crack growth in polycrystals[J]. Acta Metall,31(10):1675-1687.
0
浏览量
93
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构