中国气象局地球系统数值预报中心 / 中国气象局地球系统数值预报重点开放实验室,北京100081
王蕾(1989年生),女;研究方向:数值天气预报;E-mail:leiwang@cma.gov.cn
陈起英(1971年生),女;研究方向:数值天气预报,中尺度气象学;E-mail:chenqy@cma.gov.cn
纸质出版日期:2024-03-25,
网络出版日期:2023-12-21,
收稿日期:2023-04-27,
录用日期:2023-06-08
扫 描 看 全 文
王蕾,陈起英,徐国强等.CMA-GFS对一次强降水过程预报评估及诊断改进[J].中山大学学报(自然科学版)(中英文),2024,63(02):46-58.
WANG Lei,CHEN Qiying,XU Guoqiang,et al.Forecast evaluation of a heavy precipitation by CMA-GFS and its diagnostic improvement[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(02):46-58.
王蕾,陈起英,徐国强等.CMA-GFS对一次强降水过程预报评估及诊断改进[J].中山大学学报(自然科学版)(中英文),2024,63(02):46-58. DOI: 10.13471/j.cnki.acta.snus.2023D029.
WANG Lei,CHEN Qiying,XU Guoqiang,et al.Forecast evaluation of a heavy precipitation by CMA-GFS and its diagnostic improvement[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(02):46-58. DOI: 10.13471/j.cnki.acta.snus.2023D029.
2022年6月6~10日我国江淮-华南地区发生一次大范围强降水过程,造成重大洪涝灾害。强降水发生在850 hPa切变线附近,当切变线南压至华南地区时,配合西南暖湿气流,造成华南地区大暴雨降水。利用ERA5再分析数据及降水融合产品,评估了中国气象局全球同化预报系统(CMA-GFS)对此次过程的预报效果,诊断了预报偏差来源,进行了针对性敏感试验。结果表明:CMA-GFS对影响此次雨带位置和移动的南亚高压脊线移动、副高范围变化趋势以及850 hPa切变线移动预报与再分析结果一致,因此对雨带位置和移动趋势预报效果较好,但存在切变线降水偏弱,福建东部沿海、广东北部及广西中部的分散性大暴雨漏报,广东北部雨带偏北及暖区暴雨漏报问题;偏差诊断显示,CMA-GFS对切变线北侧风速预报偏弱3~8 m/s,广西、广东中北部水汽辐合偏弱2×10
-5
~5×10
-5
g/(m
2
·Pa·s),导致切变线降水偏弱,南侧南风分量偏强3~5 m/s导致广东北部雨带偏北约60 km,华南沿海850 hPa急流偏弱4~6 m/s,暖区水汽输送偏少4~10 g/(cm·hPa·s),导致暖区暴雨漏报;采用美国全球预报系统(NCEP-GFS)分析场初始化明显改善了雨带位置预报,采用WSM6云微物理方案及收紧积云对流参数化方案中对流触发条件改善了切变线降水中心位置和量级预报,暖区降水量级也由小到中雨增强至中到大雨。
A large-scale heavy precipitation occurred in Jianghuai-South China from June 6 to 10,2022,causing severe floods and waterlogs. The precipitation mainly appeared near the shear line at 850 hPa. When the shear line moved to South China and coincided with the southwest warm and humid air,it resulted in a rainstorm in the region. In this paper,the performance of the China Meteorological Administration Global Forecast System (CMA-GFS) on this process is evaluated using ERA5 reanalysis and merging precipitation products. The diagnosis of forecast deviations and sensitivity experiments are also conducted. The results show that the movement of the South Asia high ridge,range of subtropical high,and the movement of the shear line at 850 hPa forecast by CMA-GFS that affect the location and shift of the rain belt are consistent with the results of ERA5 reanalysis. Therefore,the CMA-GFS performed well on the location and shift of this rain belt. However,the forecast has some deficiencies including that the precipitation along the shear line is weak,scattered heavy rainstorms in eastern Fujian,Northern Guangdong and central Guangxi are missed,the rain belt in northern Guangdong is located northward,and the magnitude of precipitation in warm sector is under estimated. The deviation diagnosis reflects that the wind speed forecast on the north side of the shear line is weaker by 3~8 m/s,and the water vapor convergence over the central and northern parts of Guangxi and Guangdong is weaker by 2×10
-5
~5×10
-5
g/(m
2
·Pa·s),resulting in the weak precipitation on the shear line. The wind forecast on the south side is stronger by 3~5 m/s,resulting in the rain belt in northern Guangdong located northward by approximately 60 km. The jet over the South China coast at 850 hPa is weaker by 4~6 m/s,and the water vapor fluxes in the warm area are less by 4~10 g/(cm·hPa·s),resulting in the less rainstorms in the warm sector. Some numerical experiments are carried out to modify these deviations forecast by CMA-GFS. Using the analysis of the National Center for Environmental Prediction Global Forecast System to initialize the CMA-GFS significantly improves the forecast of rain belt location. Using the WSM6 microphysics scheme and tightening the trigger in the cumulus convective parameterization scheme improve the forecast of centers and magnitude of precipitation on the shear line,and the magnitude of the precipitation in the warm sector increases from small and moderate to moderate and heavy rain.
CMA-GFS强降水误差诊断预报改进
CMA-GFSheavy precipitationdeviation diagnosismodel improvement
宫宇,代刊,徐珺,等,2018.GRAPES-GFS模式暴雨预报天气学检验特征[J].气象,44(9):1148-1159.
辜旭赞,于晓晶,唐永兰,等,2014.一次华南——江南持续暴雨的大尺度水汽场和中尺度特大暴雨模拟诊断分析[J].气象,40(1):18-27.
何立富,陈涛,孔期,2016.华南暖区暴雨研究进展[J].应用气象学报,27(5):559-569.
侯劭禹,巩远发,赵福虎,等,2020.尺度分离技术在一次切变线诱发西南涡暴雨个例中的应用[J].成都信息工程大学学报,35(4):447-454.
黄海波,陈春艳,朱雯娜,2011.WRF模式不同云微物理参数化方案及水平分辨率对降水预报效果的影响[J].气象科技,39(5):529-536.
胡宁,符娇兰,汪会,2020.华南前汛期强降水个例模式降水预报误差成因初探[J].气象,46(8):1026-1038.
阚煜,刘朝顺,乔枫雪,等,2017.不同云微物理方案对上海特大暴雨模拟影响的分析[J].热带气象学报,33(3):399-414.
孔期,林建,2017.2015年5月19-20日华南地区不同性质暴雨成因和预报分析[J].气象,43(7):792-803.
孔祥伟,张君霞,杨晓军,等,2022.西北地区东部强降水大尺度数值模式预报空间偏差分析[J].高原气象,41(5):1109-1123.
李晓兰,符娇兰,2021.基于CRA技术的华南前汛期强降水EC模式预报误差分析[J].热带气象学报,37(2):194-206.
廖镜彪,王雪梅,夏北成,等,2012.WRF模式中微物理和积云参数化方案的对比试验[J].热带气象学报,28(4):461-470.
凌婷,谌芸,陈涛,等,2019.江淮地区两类低涡型暖式切变暴雨的中尺度特征分析[J].干旱气象,37(5):790-798.
蒙伟光,戴光丰,张艳霞,等,2012.华南局地锋生及对流系统发展的模拟分析研究[J].气象学报,70(3):387-401.
慕建利,王建捷,李泽椿,2008.2005年6月华南特大连续性暴雨的环境条件和中尺度扰动分析[J].气象学报,66(3):437-451.
伍红雨,杜尧东,秦鹏,2011.华南暴雨的气候特征及变化[J].气象,37(10):1262-1269.
彭新东,常燕,王式功,2010.GRAPES模式对2008年两次强降水过程的数值预报检验[J].高原气象,29(2):321-330.
沈学顺,苏勇,胡江林,等,2017.GRAPES_GFS 全球中期预报系统的研发和业务化[J].应用气象学报,28(1):1-10.
苏翔,刘梅,康志明,等,2022.2020年江苏主汛期短期暴雨预报检验[J].气象,48(3):357-371.
苏勇,沈学顺,张倩,2016.质量守恒的订正算法在GRAPES_GFS中的应用[J].应用气象学报,27(6):666-675.
涂静,叶萌,张华龙,等,2023.基于天气学分型的2022年广东省暴雨预报检验[J]. 广东气象,45(1):40-43.
王春明,王元,伍荣生,2004.模式水平分辨率对梅雨锋降水定量预报的影响[J].水动力学研究与进展A辑,19(1):71-80.
王建捷,周斌,郭肖容,2005.不同对流参数化方案试验中凝结加热的特征及对暴雨中尺度模拟结果的影响[J].气象学报,63(4):405-417.
伍华平,束炯,顾莹,等,2009.暴雨模拟中积云对流参数化方案的对比试验[J].热带气象学报,25(2):175-180.
徐明,赵玉春,王晓芳,等,2016. 华南前汛期持续性暴雨统计特征及环流分型研究[J]. 暴雨灾害,35(2):109-118.
徐之骁,徐海明,2016.不同云微物理方案对“7.21”特大暴雨模拟的对比试验[J].气象科学,36(1):45-54.
姚秀萍,张霞,马嘉理,等,2022.东亚夏季副热带平原和高原地区切变线特征的对比研究[J]. 气象学报,80(4):604-617.
于跃,毕明林,阎琦,等,2022.辽宁区域性大暴雨成因分析及多模式数值预报空间检验[J].气象与环境学报,38(4):11-18.
张晓美,蒙伟光,张艳霞,等,2009.华南暖区暴雨中尺度对流系统的分析[J].热带气象学报,25(5):551-560.
张雪蓉,李晓容,廖一帆,等,2021.水汽对梅雨期切变线大暴雨影响的数值试验[J].气象科学,41(5):617-630.
BUEHNER M,HOUTEKAMER P L,CHARETTE C,et al,2010. Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. part I: Description and single-observation experiments[J]. Mon Weather Rev,138(5): 1550-1566.
DEE D P,UPPALA S,2009. Variational bias correction of satellite radiance data in the ERA-Interim reanalysis[J]. Quart J Royal Meteoro Soc,135(644): 1830-1841.
GAO Y,XIAO H,CHAN P W,et al,2019. Application of the multigrid 3D variation method to a combination of aircraft observations and bogus data for Typhoon Nida (2016)[J]. Meteorol Appl,26(2): 312-323.
NAAKKA T,NYGÅRD T,TJERNSTRÖM M,et al,2019. The impact of radiosounding observations on numerical weather prediction analyses in the Arctic[J]. Geophys Res Lett,46(14): 8527-8535.
SUN J,ZHANG Y,LIU R,et al,2019. A review of research on warm-sector heavy rainfall in China[J]. Adv in Atmos Sci,36(12):1299-1307.
0
浏览量
8
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构