1.中山大学地球科学与工程学院,广东 珠海 519082
2.南方海洋科学与工程广东省实验室(珠海),广东 珠海 519082
高雪(1998年生),女;研究方向:钙质砂颗粒破碎;E-mail:gaox76@mail2.sysu.edu.cn
高燕(1984年生),女;研究方向:土的宏微观结构性、智能监测;E-mail:gaoyan25@mail.sysu.edu.cn
纸质出版日期:2023-11-25,
网络出版日期:2023-06-19,
收稿日期:2023-04-03,
录用日期:2023-04-24
扫 描 看 全 文
高雪,高燕,孙可天等.剪切过程中钙质砂的颗粒破碎与能量演化[J].中山大学学报(自然科学版),2023,62(06):11-21.
GAO Xue,GAO Yan,SUN Ketian,et al.Particle breakage and energy evolution of calcareous sands during shearing process[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(06):11-21.
高雪,高燕,孙可天等.剪切过程中钙质砂的颗粒破碎与能量演化[J].中山大学学报(自然科学版),2023,62(06):11-21. DOI: 10.13471/j.cnki.acta.snus.2023D023.
GAO Xue,GAO Yan,SUN Ketian,et al.Particle breakage and energy evolution of calcareous sands during shearing process[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(06):11-21. DOI: 10.13471/j.cnki.acta.snus.2023D023.
颗粒破碎是影响钙质砂宏观力学变形特征的重要因素,亦会导致微观上的能量耗散机制发生改变。为研究剪切过程中钙质砂的颗粒破碎与能量演化的关系,本文基于PFC
2D
软件,建立考虑了颗粒破碎的钙质砂离散元模型进行剪切试验模拟,阐释剪切过程中钙质砂的颗粒破碎与能量演化的关系。结果表明,在整个剪切过程中钙质砂颗粒持续破碎,但随着剪切的进行产生同样的破碎将需要更大的输入功,颗粒破碎逐渐集中于剪切带内,破碎率的增加会分散颗粒破碎带的集中程度。摩擦耗能在整个剪切过程中起主要作用,颗粒破碎不仅影响应变能的积累,亦对摩擦耗能的分布产生影响,低破碎率钙质砂摩擦能主要由剪切带内颗粒重排产生,高破碎率钙质砂颗粒破碎产生子颗粒的运动提供了摩擦耗散。能量的变化亦与宏观应力应变的发展相对应,破碎能量的增加使得应变能减少,颗粒运动跃迁的能量减少,最终密砂的剪切响应向松砂转变。
Particle breakage affects the macro-mechanical properties of calcareous sand and also changes the mechanism of energy dissipation at the micro-scale. To explore the relationship between particle breakage and energy evolution of calcareous sand during shearing, PFC
2D
simulations of shearing tests of calcareous sand were performed considering particle breakage. The results show that: 1) Particles continually break during the entire shearing process. With the progress of shearing, the same crushing requires more input work and the particle crushing makes the shear band disperse. 2) The friction energy dissipation plays an important role in the whole shearing process. Particle breakage not only affects the accumulation of strain energy but also influences the distribution of friction energy consumption. 3) The friction energy of calcareous sand with a low crushing rate is mainly produced by particle rearrangement in the shear band, while the friction dissipation of calcareous sand with a high crushing rate is more attributed to the movement of sub-particles produced by the breakage. 4) The change of energy also corresponds to the macroscopic development of stress and strain. With the increase of breakage dissipation, the strain energy decreases, and the energy of particle transition also decreases, which finally leads to the shear response of dense sand changing to that of loose sand.
钙质砂离散元能量耗散颗粒破碎剪切带
calcareous sandDEMenergy dissipationparticle breakageshear band
陈海洋, 汪稔, 李建国, 2005. 钙质砂颗粒的形状分析 [J]. 岩土力学, (9): 1389-1392.
陈庆, 高燕, 袁泉, 2021. 密实砂土剪切过程中的微观结构响应 [J]. 水利水电技术(中英文), 52(6): 178-187.
高燕, 史天根, 李文龙, 2022. 钙质砂压缩过程中颗粒破碎的细观特征 [J]. 水力发电学报, 41(6): 120-130.
何建乔, 魏厚振, 孟庆山, 2018. 大位移剪切下钙质砂破碎演化特性 [J]. 岩土力学, 39(1): 165-172.
蒋明镜, 2019. 现代土力学研究的新视野——宏微观土力学 [J]. 岩土工程学报, 41(2): 195-254.
刘苏, 王剑锋, 2018. 一种基于离散元的模拟颗粒破碎方法 [J]. 岩土工程学报, 40(9): 1706-1713.
毛炎炎, 雷学文, 孟庆山, 2017. 考虑颗粒破碎的钙质砂压缩特性试验研究 [J]. 人民长江, 48(9): 75-78+102.
孙吉主, 汪稔, 2003. 三轴压缩条件下钙质砂的颗粒破裂过程研究 [J]. 岩土力学, 24(5): 822-825.
汪轶群, 洪义, 国振, 2018. 南海钙质砂宏细观破碎力学特性 [J]. 岩土力学, 39(1): 199-206.
王刚, 查京京, 魏星, 2019. 循环三轴应力路径下钙质砂颗粒破碎演化规律 [J]. 岩土工程学报, 41(4): 755-760.
王刚, 杨俊杰, 王兆南, 2021. 钙质砂临界状态随颗粒破碎演化规律分析 [J]. 岩土工程学报, 43(8): 1511-1517.
王伟光, 2020. 钙质砂宏观力学变形特征及颗粒破碎研究进展 [J]. 山西建筑, 46(17): 65-71.
吴京平, 楼志刚, 1994. 钙质土的基本特性[C]//中国土木工程学会第七届土力学及基础工程学术会议. 西安.
吴京平, 褚瑶, 楼志刚, 1997. 颗粒破碎对钙质砂变形及强度特性的影响 [J]. 岩石工程学报, (5): 51-57.
叶剑红, 曹梦, 李刚, 2019. 中国南海吹填岛礁原状钙质砂蠕变特征初探 [J]. 岩石力学与工程学报, 38(6): 1242-1251.
张家铭,邵晓泉,王霄龙,等, 2015. 沉桩过程中钙质砂颗粒破碎特性模拟研究 [J]. 岩土力学,36(1): 272-278.
张家铭, 汪稔, 石祥锋, 等,2005. 侧限条件下钙质砂压缩和破碎特性试验研究 [J]. 岩石力学与工程学报, 24(18): 3327-3331.
张家铭, 张凌, 蒋国盛, 2008. 剪切作用下钙质砂颗粒破碎试验研究 [J]. 岩土力学, 29(10): 2789-2793.
张科芬, 张升, 滕继东, 2017. 颗粒破碎的三维离散元模拟研究 [J]. 岩土力学, 38(7): 2119-2127.
周博, 黄润秋, 汪华斌, 2014. 基于离散元法的砂土破碎演化规律研究 [J]. 岩土力学, (9): 2709-2716.
朱长歧, 陈海洋, 孟庆山. 钙质砂颗粒内孔隙的结构特征分析 [J]. 岩土力学, 2014, (7): 1831-1836.
BOLTON M D, NAKATA Y, CHENG Y P, 2008. Micro- and macro-mechanical behaviour of DEM crushable materials [J]. Geotechnique, 58(6): 471-480.
CUNDALL P A, STRACK O D L, 1979. A discrete numerical model for granular assemblies [J]. Geotechnique, 29: 47-65.
CHENG Y P, NAKATA Y, BOLTON M D, 2003. Discrete element simulation of crushable soil [J]. Geotechnique, 53(7): 633-641.
DONOHUE S, O'SULLIVAN C, LONG M, 2009. Particle breakage during cyclic triaxial loading of a carbonate sand [J]. Geotechnique, 59(5): 477-482.
GEORGOUTSOS, FREITAS G B, TERESA SORENSEN K, et al, 2004. Particle breakage during shearing of a carbonate sand [J]. Geotechnique, 54: 157-163.
Itasca Consulting Group Inc., 2008. PFC2D manual (Version 4.0) [M]. Minneapolis: Irasca Consulting Group Inc.
KUHN M R, BAGI K, 2009. Specimen size effect in discrete element simulations of granular assemblies [J]. Journal of Engineering Mechanics, 135(6): 485-492.
LOBO-GUERRERO S, VALLEJO L, 2005. DEM analysis of crushing around driven piles in granular materials [J]. Geotechnique, 55(8): 617-623.
LOBO-GUERRERO S, VALLEJO L E, 2006. Discrete element method analysis of railtrack ballast degradation during cyclic loading [J]. Granular Matter, 8(3): 195-204.
RUSSELL A R, WOOD D M, KIKUMOTO M, 2009. Crushing of particles in idealised granular assemblies [J]. Journal of the Mechanics and Physics of Solids, 57(8): 1293-1313.
SHAHNAZARI H, REZVANI R, 2013. Effective parameters for the particle breakage of calcareous sands: An experimental study [J]. Engineering Geology, 159: 98-105.
WANG J, YAN H, 2012. DEM analysis of energy dissipation in crushable soils [J]. Soils and Foundations, 52(4): 644-657.
WANG J, YAN H, 2013. On the role of particle breakage in the shear failure behavior of granular soils by DEM [J]. Geomechanics, 37(8): 832-854.
0
浏览量
27
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构