1.中山大学航空航天学院,广东 深圳 518107
2.Robotics and Mechatronics, University of Twente, Enschede 7522 NB, the Netherlands
张栏(1998年生),男;研究方向:计算流体力学;E-mail:zhanglan26@mail2.sysu.edu.cn
姚清河(1980年生),男;研究方向:计算流体力学、大规模并行算法;E-mail:yaoqhe@mail.sysu.edu.cn
纸质出版日期:2023-09-25,
网络出版日期:2023-06-19,
收稿日期:2023-02-22,
录用日期:2023-03-28
扫 描 看 全 文
张栏,蒋子超,陈玉惠等.具有间断解的PTT型黏弹性流体热对流数值模拟[J].中山大学学报(自然科学版),2023,62(05):136-144.
ZHANG Lan,JIANG Zichao,CHEN Yuhui,et al.Numerical simulation of thermal convection of PTT viscoelastic fluid with discontinuous solution[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(05):136-144.
张栏,蒋子超,陈玉惠等.具有间断解的PTT型黏弹性流体热对流数值模拟[J].中山大学学报(自然科学版),2023,62(05):136-144. DOI: 10.13471/j.cnki.acta.snus.2023D008.
ZHANG Lan,JIANG Zichao,CHEN Yuhui,et al.Numerical simulation of thermal convection of PTT viscoelastic fluid with discontinuous solution[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(05):136-144. DOI: 10.13471/j.cnki.acta.snus.2023D008.
从间断解充分发展的黏弹性流体Rayleigh-Bénard(RB)热对流具备不同流态的时间信息和发展过程的流态变换,研究该问题对阐明Phan-Thien-Tanner(PTT)型黏弹性流体RB热对流的流动机理具有重要意义。本文首次采用二阶迎风型总变差不增差分格式对PTT型黏弹性流体的RB热对流进行了数值模拟,并基于与解析解的对比论证了该数值方法在空间离散上的收敛性与二阶精度。数值结果表明,本文的数值方法可模拟自间断初始场演化的PTT型黏弹性流体RB热对流,此外,本文还对该流动发展到稳态周期解的瞬态流动现象作了基本阐释,流动现象与从先验速度场发展的流动现象一致。
The study of the time information and transitional behavior of flow states in the development of intermittent solutions in Rayleigh-Bénard (RB) convection of viscoelastic fluids has great significance in understanding the flow mechanics of Phan-Thien-Tanner (PTT) viscoelastic fluid RB convection. In this paper, we first use a second-order upwind-type total variation diminishing (TVD) scheme to numerically simulate PTT viscoelastic fluid RB convection, and demonstrate the convergence and second-order accuracy of the numerical method in spatial discretization based on the comparison between the numerical and analytical solutions. The numerical results indicate that the numerical method employed in this paper can simulate the evolution of PTT viscoelastic fluid RB thermal convection with discontinuity initial field, and provide a fundamental explanation for the transient flow phenomena of this flow up to the development of steady periodic solutions, which are consistent with the flow phenomena developed from the a priori velocity field.
间断解总变差不增格式黏弹性流体Phan-Thien-Tanner模型Rayleigh-Bénard对流
discontinuous solutiontotal variation diminishing schemeviscoelastic fluidPhan-Thien-Tanner modelRayleigh-Bénard convection
贺啸秋, 熊永亮, 彭泽瑞等, 2022. 旋转肥皂泡热对流能量耗散与边界层特性的数值模拟[J]. 物理学报, 71(20):168-186.
李勇, 卓琦又, 何录武,2019. 粘弹流体轴对称流动的格子Boltzmann方法[J]. 力学季刊, 40(1):106-114.
刘玉玲, 王玲玲, 周孝德等, 2010. 二维溃坝洪水波传播的高精度数值模拟[J]. 自然灾害学报, 19(5): 164-169.
石峯, 宁利中, 王芳等,2008. 矩形腔体中Rayleigh-Benard对流结构的分析[J]. 西安理工大学学报, 24(4):484-489.
周全, 夏克青,2012. Rayleigh-Bénard湍流热对流研究的进展、现状及展望[J].力学进展,(3): 231-251.
ABU-RAMADAN E, HAY J M, KHAYAT R E, 2003. Characterization of chaotic thermal convection of viscoelastic fluids[J]. J Non Newton Fluid Mech, 115(2/3): 79-113.
AZAIEZ J, GUÉNETTE R, AIT-KADI A, 1996. Entry flow calculations using multi-mode models[J]. J Non Newton Fluid Mech, 66(2/3): 271-281.
BIRD R B, WIEST J M, 1995. Constitutive equations for polymeric liquids[J]. Annu Rev Fluid Mech, 27: 169-193.
BODENSCHATZ E, PESCH W, AHLERS G, 2000. Recent developments in Rayleigh-Bénard convection[J]. Annu Rev Fluid Mech, 32: 709-778.
ČADA M, TORRILHON M, 2009. Compact third-order limiter functions for finite volume methods[J]. J Comput Phys, 228(11): 4118-4145.
CHEN Y, LI M, YAO Q, et al, 2021. Global well-posedness for the three-dimensional generalized Phan-Thien-Tanner model in critical Besov spaces[J]. J Math Fluid Mech, 23(3): 55.
CHEN Y, LI M, YAO Q, et al,2022.The sharp time decay rates and stability of large solutions to the two-dimensional Phan-Thien-Tanner system with magnetic field[J]. Asymptot Anal, 129(3/4): 451-484.
DUBEY R K, 2013. Flux limited schemes: Their classification and accuracy based on total variation stability regions[J]. Appl Math Comput, 224: 325-336.
EDELEVA M, TANG D, van WAELEGHEM T, et al, 2021. Testing the PTT rheological model for extrusion of virgin and composite materials in view of enhanced conductivity and mechanical recycling potential[J]. Processes,9(11): 1969.
GOSWAMI S, HEMMATI A, 2021. Response of viscoelastic turbulent pipeflow past square bar roughness:The effect on mean flow[J]. Computation,9(8): 85.
HARTEN A, 1983. High resolution schemes for hyperbolic conservation laws[J]. J Comput Phys, 49(3): 357-393.
HAYAT T, ABBAS Z, ALI N, 2008. MHD flow and mass transfer of a upper-convected Maxwell fluid past a porous shrinking sheet with chemical reaction species[J]. Phys Lett A, 372(26): 4698-4704.
KEMM F, 2011. A comparative study of TVD-limiters—Well-known limiters and an introduction of new ones[J]. Int J Numer Methods Fluids, 67(4): 404-440.
KURON M, STEWART C, de GRAAF J, et al, 2021. An extensible lattice Boltzmann method for viscoelastic flows: Complex and moving boundaries in Oldroyd-B fluids[J]. Eur Phys J E Soft Matter, 44(1): 1.
OGAWA M, 2008. Mantle convection: A review[J]. Fluid Dyn Res, 40(6): 379-398.
OLDENBURG C M, PRUESS K, 2000. Simulation of propagating fronts in geothermal reservoirs with the implicit Leonard total variation diminishing scheme[J]. Geothermics, 29(1): 1-25.
OLDROYD G J, 1950. On the formulation of rheological equations of state[J]. Proc R Soc Lond A, 200(1063): 523-541.
PARK H M, 2018. Peculiarity in the Rayleigh-Bénard convection of viscoelastic fluids[J]. Int J Therm Sci, 132: 34-41.
PARK H M, PARK K S, 2004. Rayleigh-Bénard convection of viscoelastic fluids in arbitrary finite domains[J]. Int J Heat Mass Transf, 47(10/11): 2251-2259.
PARK H M, SHIN K S, SOHN H S, 2009. Numerical simulation of thermal convection of viscoelastic fluids using the grid-by-grid inversion method[J]. Int J Heat Mass Transf, 52(21/22): 4851-4861.
PHAN-THIEN N, 1978. A nonlinear network viscoelastic model[J]. J Rheol, 22(3): 259-283.
QUINZANI L M, ARMSTRONG R C, BROWN R A, 1994. Birefringence and laser-Doppler velocimetry (LDV) studies of viscoelastic flow through a planar contraction[J]. J Non Newton Fluid Mech, 52(1): 1-36.
SCHOONEN J F M, SWARTJES F H M, PETERS G W M, et al, 1998. A 3D numerical/experimental study on a stagnation flow of a polyisobutylene solution[J]. J Non Newton Fluid Mech, 79(2/3): 529-561.
SHIN D M, LEE J S, KIM J M, et al, 2007. Transient and steady-state solutions of 2D viscoelastic nonisothermal simulation model of film casting process via finite element method[J]. J Rheol, 51(3): 393-407.
THIEN N P, TANNER R I, 1977. A new constitutive equation derived from network theory[J]. J Non Newton Fluid Mech, 2(4): 353-365.
TSENG H C, 2021. A revisitation of white-metzner viscoelastic fluids[J]. Phys Fluids, 33(5): 057115.
YUAN M, 2019. A predictor-corrector symmetric TVD scheme for magnetogasdynamic flow[J]. Comput Phys Commun, 237: 86-97.
ZHENG X, HAGANI F, BOUTAOUS M, et al, 2022. Pattern selection in Rayleigh-Bénard convection with nonlinear viscoelastic fluids[J].Phys Rev Fluids,7(2): 023301.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构