1.中山大学航空航天学院,广东 深圳 518107
2.中山大学人工智能学院,广东 珠海 519080
陈伟文(2000年生),男;研究方向:无人机系统;E-mail:chenww59@mail2.sysu.edu.cn
胡天江(1979年生),男;研究方向:群体智能,集群系统;E-mail:hutj3@mail.sysu.edu.cn
纸质出版日期:2024-03-25,
网络出版日期:2023-12-04,
收稿日期:2023-01-08,
录用日期:2023-04-27
扫 描 看 全 文
陈伟文,田秋扬,胡天江.灾难场景建筑三维重建的无人机航迹规划方法[J].中山大学学报(自然科学版)(中英文),2024,63(02):78-84.
CHEN Weiwen,TIAN Qiuyang,HU Tianjiang.UAV path planning for 3D reconstruction of buildings under disaster scenarios[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(02):78-84.
陈伟文,田秋扬,胡天江.灾难场景建筑三维重建的无人机航迹规划方法[J].中山大学学报(自然科学版)(中英文),2024,63(02):78-84. DOI: 10.13471/j.cnki.acta.snus.2023D005.
CHEN Weiwen,TIAN Qiuyang,HU Tianjiang.UAV path planning for 3D reconstruction of buildings under disaster scenarios[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(02):78-84. DOI: 10.13471/j.cnki.acta.snus.2023D005.
利用无人机对灾难场景进行三维重建的应用技术,可以帮助救援人员快速了解灾难现场破坏程度、受灾人员位置分布,从而确定更好的救援方案。鉴于灾难场景状况复杂,为无人机提前规划飞行航线和拍摄视点,可实现快速对灾难区域的覆盖侦察与重建。在无人机面向灾难区域进行图像采集与三维重建的背景下,重点关注无人机在灾难场景下的航迹规划问题,通过无人机快速倾斜扫掠灾难区域以建立先验模型,并对先验模型表面进行采样和评估,进一步生成具有位置和方向约束的三维视点。为满足无人机和云台相机的动力学约束,将多视点连接与航迹规划作为优化问题进行求解,同时考虑了路径的平滑性与视点的可达性以产生规划航迹。与环形航线和之字形航线的规划方法相比,本文方法可以更为快速地实现无人机三维航迹规划并建立受灾区域的三维模型。
In recent years, three-dimensional (3D) reconstruction methods for complex disaster scenarios have attracted more and more attention, as the reconstruction of disaster scenarios can help rescuers rapidly cognize the extent of damage, locate victims, and plan the consequent tasks. To achieve rapid coverage and reconstruction of the chaotic disaster area, it is essential to plan optimized flying routes for UAVs. Based on the image acquisition and 3D reconstruction of the disaster area, this study focuses on the problem of path planning of UAVs. By establishing an a priori model via rapid air-camera sweeping of the UAV, the point cloud information is generated after evaluation, and the 3D viewpoint with position and direction constraints is generated. To meet the dynamic constraints of the UAV itself and the rotation constraints of the PTZ camera, the continuity of the path and the quality of the views are considered. Compared with Zig-Zag and circular paths, this study constructs a quick path planning method for 3D reconstruction of the disaster area.
灾难救援三维重建航迹规划无人机麻雀搜索算法
disaster rescue3D reconstructionpath planningUAVsparrow search algorithm
国家测绘局,2003. 测绘标准汇编—摄影测量与遥感卷[M]. 北京:中国标准出版社.
韩青岩,2017. 面向三维重建的航拍路径规划及相机位姿控制技术研究[D].南京:南京航空航天大学.
石础,2021. 面向城市三维重建的无人机航拍路径规划方法研究[D].天津:天津理工大学.
汤安迪,韩统,徐登武,等,2021. 基于混沌麻雀搜索算法的无人机航迹规划方法[J].计算机应用,41(7): 2128-2136.
AKSHYA J,PRIYADARSINI P L K,2021. Area partitioning by intelligent UAVs for effective path planning using evolutionary algorithms[C]//2021 International Conference on Computer Communication and Informatics(ICCCI). India:1-6.
HARDOUIN G,MORAS J,MORBIDI F,et al,2021. Next-best-view planning for surface reconstruction of large-scale 3D environments with multiple UAVs[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).USA:1567-1574.
HEPP B,NIEßNER M,HILLIGES O,2019. Plan3D: Viewpoint and trajectory optimization for aerial multi-view stereo reconstruction [J]. ACM Trans Graph,38(1): 1-17.
LIU H,LI X,FAN M,et al,2022. An autonomous path planning method for unmanned aerial vehicle based on a tangent intersection and target guidance strategy[J]. IEEE Trans Intell Transp Syst,23(4): 3061-3073.
MAJDIK A L,TILL C,SCARAMUZZA D,2017. The Zurich urban micro aerial vehicle dataset [J]. Int J Robotics Res,36(3): 269-273.
MANCINI F,DUBBINI M,GATTELLI M,et al,2013. Using unmanned aerial vehicles(UAV) for high-resolution reconstruction of topography:The structure from motion approach on coastal environments [J]. Remote Sens,5(12): 6880-6898.
PAUL S,UDAYSANKAR D,NAIDU Y,et al,2022. An efficient SIFT-based matching algorithm for optical remote sensing images[J]. Remote Sens Lett,13(11): 1069-1079.
QU Y,HUANG J,ZHANG X,2018. Rapid 3D reconstruction for image sequence acquired from UAV camera[J]. Sensors,18(1): 225.
ROBERTS M,SHAH S,DEY D,et al,2017. Submodular trajectory optimization for aerial 3D scanning[C]//2017 IEEE International Conference on Computer Vision (ICCV). Italy:5334-5343.
SCHÖNBERGER J L,FRAHM J M,2016. Structure-from-motion revisited[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).USA:4104-4113.
SHAH S,DEY D,LOVETT C,et al,2018. AirSim: High-fidelity visual and physical simulation for autonomous vehicles[C]//Field and Service Robotics. Cham: Springer: 621-635.
SMITH N,MOEHRLE N,GOESELE M,et al,2018. Aerial path planning for urban scene reconstruction: A continuous optimization method and benchmark [J]. ACM Trans Graph, 37: 6.
STOICAN F,POPESCU D,2015.Trajectory generation with way-point constraints for UAV systems[C]//Advances in Robot Design and Intelligent Control. Cham: Springer: 379-386.
XU K,HUANG H,SHI Y,2015. Autoscanning for coupled scene reconstruction and proactive object analysis [J]. ACM Trans Graph,34(6):1-14.
YAN F,XIA E,LI Z,et al,2021. Sampling-based path planning for high-quality aerial 3D reconstruction of urban scenes [J]. Remote Sens,13(5): 989.
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构