中山大学环境科学与工程学院,广东 广州 510006
马曦(1993年生),女;研究方向:电催化水处理技术;E-mail:maxi6@mail2.sysu.edu.cn
李传浩(1983年生),男;研究方向:环境功能材料;E-mail:lichuanh3@mail.sysu.edu.cn
纸质出版日期:2023-11-25,
网络出版日期:2023-10-26,
收稿日期:2023-08-31,
录用日期:2023-10-05
扫 描 看 全 文
马曦,李传浩.二维钴基纳米片阴极电催化还原硝酸盐氮[J].中山大学学报(自然科学版),2023,62(06):40-49.
MA Xi,LI Chuanhao.Electrocatalytic reduction of nitrates with a two-dimensional cobalt-based nanosheet cathode[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(06):40-49.
马曦,李传浩.二维钴基纳米片阴极电催化还原硝酸盐氮[J].中山大学学报(自然科学版),2023,62(06):40-49. DOI: 10.13471/j.cnki.acta.snus.2023C011.
MA Xi,LI Chuanhao.Electrocatalytic reduction of nitrates with a two-dimensional cobalt-based nanosheet cathode[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(06):40-49. DOI: 10.13471/j.cnki.acta.snus.2023C011.
鉴于污染废水中稳定存在的硝酸盐氮的毒性和潜在致癌性,急需开发高效的硝态氮处理技术。电化学法具有高效、稳定且产物可控等优点,成为目前净化废水中硝酸盐污染最具潜力的处理工艺。然而,传统的粉体电催化剂在复杂水体中容易受到抑制,因此需要寻找更高效的电催化材料。本研究使用模板法和煅烧法制备了二维钴基纳米片阴极(Co NS/CC),并研究了其电催化还原硝酸盐的性能。实验结果表明,煅烧温度为700 ℃的Co NS/CC展现出最佳的电催化脱硝性能,在1 h内即可达到较高的反应速率常数(2.88 h
-1
)和硝酸盐去除率(95%)。另外,Co NS/CC-700在较高质量浓度的硝酸盐氮、不同pH值的溶液和含有复杂成分的水体中都表现出良好的电催化脱硝能力。电子顺磁共振(EPR)和叔丁醇(TBA)捕获实验证实,Co NS/CC-700通过产生的吸附态氢(H*)来促进硝酸盐的还原。此外,Co NS/CC-700还具有较高的稳定性和环境适应性。综上所述,Co NS/CC-700是一种具有高催化活性和稳定性的电催化材料,对于电催化处理含硝酸盐废水具有潜在应用价值。
Development of an efficient technique for nitrate treatment is urgent in view of the toxicity and potential carcinogenicity of nitrate nitrogen stably present in wastewater. The electrochemical method, with the advantages of high efficiency, stability and product controllability, has become the most promising wastewater purification process for purifying nitrate pollution in wastewater. However, traditional powder electrocatalysts are easily inhibited in complex water bodies, and finding a more efficient electrocatalytic material is necessary. In this study, two-dimensional cobalt-based nanosheet cathodes (Co NS/CC) were prepared using template and calcination methods, and investigated the performance of electrocatalytic reduction of nitrate. The experimental results showed that Co NS/CC with a calcination temperature of 700 ℃ exhibited the best electrocatalytic denitrification performance with a high reaction rate constant (2.88 h
-1
) and nitrate removal efficiency (95%) in 1 h. In addition, Co NS/CC-700 exhibited excellent electrocatalytic denitrification for a high concentration of nitrate, different pH values of solutions and wastewater with complex components. Electron paramagnetic resonance (EPR) and tertiary butyl alcohol (TBA) capture experiments confirmed that Co NS/CC-700 facilitates nitrate reduction through the generation of adsorbed hydrogen (H*). In addition, Co NS/CC-700 has high stability and environmental adaptability. In conclusion, Co NS/CC-700 is an electrocatalytic material with high catalytic activity and stability, which is potentially applicable for electrocatalytic treatment of nitrate-containing wastewater.
电催化还原硝酸盐二维钴基纳米片阴极硝酸盐废水净化
electrocatalytic reduction of nitratetwo-dimensional cobalt-based nanosheet cathodepurification of nitrate containing wastewater
郭睿, 秦侠, 郭城睿, 等, 2022. Ni foam/Cu电极电催化还原硝酸盐氮[J]. 环境化学, 41(6): 2103-2111.
李亮, 貟亚锋, 罗梦玉, 等, 2018. Cu-Co-Al类水滑石的制备及其电催化还原硝酸盐研究[J]. 能源研究与信息, 34(2):75-81.
王芬, 陈云生, 侯冠军, 等,2018. 电化学降解技术在水产养殖废水处理的研究现状及应用前景[J]. 水处理技术, 44(7):6-9+25.
CHAPLIN B P, REINHARD M, SCHNEIDER W F, et al, 2012. Critical review of Pd-based catalytic treatment of priority contaminants in water[J]. Environ Sci Technol, 46(7): 3655-3670.
CHEN C, LI K, LI C, et al, 2019. Combination of Pd-Cu catalysis and electrolytic H2 evolution for selective nitrate reduction using protonated polypyrrole as a cathode[J]. Environ Sci Technol, 53(23): 13868-13877.
DUAN W J, LI G, LEI Z, et al. 2019. Highly active and durable carbon electrocatalyst for nitrate reduction reaction[J]. Water Res, 161: 126-135.
MOSTAFA E, REINSBERG P, GARCIA-SEGURA S, et al, 2018. Chlorine species evolution during electrochlorination on boron-doped diamond anodes: In-situ electrogeneration of Cl2, Cl2O and ClO2[J]. Electrochimica Acta, 281: 831-840.
GIAMMARINO M, QUATTO P, 2015. Nitrates in drinking water: Relation with intensive livestock production[J]. J Prev Med Hyg, 56(4): E187-E189.
HUANG H W, CHO A, KIM S, et al, 2020. Structural design of amorphous CoMoPx with abundant active sites and synergistic catalysis effect for effective water splitting[J]. Adv Funct Mater, 30(43): 2003889.
KIBSGAARD J, JARAMILLO T F, 2014. Molybdenum phosphosulfide: An active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction[J]. Angewandte Chemie Int Ed, 53(52): 14433-14437.
KIM M S, CHUNG S H, YOO C J, et al, 2013. Catalytic reduction of nitrate in water over Pd–Cu/TiO2 catalyst: Effect of the strong metal-support interaction (SMSI) on the catalytic activity[J]. Appl Catal B Environ, 142/143: 354-361.
LI Y, MA J, WAITE T D, et al, 2021. Development of a mechanically flexible 2D-MXene membrane cathode for selective electrochemical reduction of nitrate to N2: Mechanisms and implications[J]. Environ Sci Technol, 55(15): 10695-10703.
LI Y, MA J, WU Z C, et al, 2022. Direct electron transfer coordinated by oxygen vacancies boosts selective nitrate reduction to N2 on a Co-CuOx electroactive filter[J]. Environ Sci Technol, 56(12): 8673-8681.
MOOK W T, CHAKRABARTI M H, AROUA M K, et al, 2012. Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: A review[J]. Desalination, 285: 1-13.
XU B C, CHEN Z X, ZHANG G, et al, 2022. On-demand atomic hydrogen provision by exposing electron-rich cobalt sites in an open-framework structure toward superior electrocatalytic nitrate conversion to dinitrogen[J]. Environ Sci Technol, 56(1): 614-623.
XU S S, LIU R Q, SHI X R, et al, 2020. A dual CoNi MOF nanosheet/nanotube assembled on carbon cloth for high performance hybrid supercapacitors[J]. Electrochimica Acta, 342: 136124.
YU P, WANG L, SUN F F, et al, 2019. Co nanoislands rooted on Co-N-C nanosheets as efficient oxygen electrocatalyst for Zn-air batteries[J]. Adv Mater, 31(30): 1901666.
ZHANG C Y, HE D, MA J X, et al, 2018. Active chlorine mediated ammonia oxidation revisited: Reaction mechanism, kinetic modelling and implications[J]. Water Res, 145: 220-230.
ZHANG H, WANG C Q, LUO H X, et al, 2022. Iron nanoparticles protected by chainmail-structured graphene for durable electrocatalytic nitrate reduction to nitrogen [J]. Angew Chem Int Ed, 62(5): e202217071.
ZHANG J, ZHANG G, LAN H C, et al, 2021a. Synergetic hydroxyl radical oxidation with atomic hydrogen reduction lowers the organochlorine conversion barrier and potentiates effective contaminant mineralization [J]. Environ Sci Technol, 55(5): 3296-3304.
ZHANG X, WANG Y T, LIU C B, et al. 2021b. Recent advances in non-noble metal electrocatalysts for nitrate reduction[J]. Chem Eng J, 403: 126269.
ZHENG W X, ZHU L Y, YAN Z, et al. 2021. Self-activated Ni cathode for electrocatalytic nitrate reduction to ammonia: From fundamentals to scale-up for treatment of industrial wastewater[J]. Environ Sci Technol, 55(19): 13231-13243.
0
浏览量
13
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构