西安工程大学环境与化工学院, 陕西 西安710048
马明明(1969年生),女;研究方向:功能材料绿色制备及应用;E-mail:19961001@xpu.edu.cn
纸质出版日期:2024-05-25,
网络出版日期:2024-01-08,
收稿日期:2023-08-30,
录用日期:2023-12-04
扫 描 看 全 文
马明明,崔淑慧.羟基磷灰石的电化学制备及其除氟性[J].中山大学学报(自然科学版)(中英文),2024,63(03):119-127.
MA Mingming,CUI Shuhui.Electrochemical preparation of hydroxyapatite and its removal of fluorine ions[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(03):119-127.
马明明,崔淑慧.羟基磷灰石的电化学制备及其除氟性[J].中山大学学报(自然科学版)(中英文),2024,63(03):119-127. DOI: 10.13471/j.cnki.acta.snus.2023C010.
MA Mingming,CUI Shuhui.Electrochemical preparation of hydroxyapatite and its removal of fluorine ions[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(03):119-127. DOI: 10.13471/j.cnki.acta.snus.2023C010.
采用清洁简便的多扫循环伏安法制备出羟基磷灰石(HAP),利用X射线衍射仪与红外光谱仪分析了合成的中间产物二水磷酸氢钙(DCPD)、最终产物HAP的晶面结构与官能团。扫描电镜显示HAP的表面形貌呈现分散性较好的棒状结构。同时,以水中F
-
为吸附对象,研究了水中条件参数如pH、温度、阴离子含量等对所合成HAP吸附F
-
容量的影响。结果表明,在pH为3~6的范围内,HAP对F
-
的吸附量随pH升高逐渐增大,并在pH为6时达到最大;pH在6~10的范围内,HAP对F
-
的吸附量随pH升高逐渐下降。水中可能共存的阴离子如Cl
-
、NO
<math id="M1"><msubsup><mrow/><mrow><mn mathvariant="normal">3</mn></mrow><mrow><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=59484512&type=
3.72533321
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=59484513&type=
1.10066664
、
<math id="M2"><mi mathvariant="normal">S</mi><msubsup><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">4</mn></mrow><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=59484514&type=
3.47133350
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=59484515&type=
6.26533365
、CO
<math id="M3"><msubsup><mrow/><mrow><mn mathvariant="normal">3</mn></mrow><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=59484516&type=
3.72533321
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=59484517&type=
2.53999996
,不干扰HAP对F
-
的吸附。在15~55 ℃的温度范围内,温度升高,HAP吸附容量增加,并在55 ℃时达到8.36 mg/g的最大吸附量,高于文献中同类材料的吸附量;经过4次吸附-脱附试验,HAP对模拟废水中F
-
的去除效果依然符合国家标准。此外,HAP对F
-
的吸附是一熵增、吸热的自发过程,符合Langmuir-Freundlich、Dubinin-Radushkevich两种吸附等温模型,并遵循颗粒内扩散的动力学反应机制。
In this paper, hydroxyapatite (HAP) was synthesized by clean and simple multi-scan cycle voltammetry. The crystal structure and functional group of intermediate products calcium hydrogen phosphate dihydrate (DCPD) and hydroxyapatite(HAP) were characterized by X-ray diffraction and infrared spectroscopy. Scanning electron microscope showed that the surface of HAP was a rod-like structure with good dispersion. Taking fluorine ions in water as adsorption objects, the effects of the parameters such as pH, possible coexistence anions and temperature on the adsorption capacity of synthesized HAP were studied. The results showed that in the range of pH of 3-6, the adsorption capacity of HAP to fluorine ions gradually increased with the increase of pH and reached the maximum when the pH was 6; in the range of pH of 6-10, and the adsorption of HAP to fluorine ions gradually decreased with the increase of pH. Anions that may coexist in water, such as Cl
-
、 NO
<math id="M4"><msubsup><mrow/><mrow><mn mathvariant="normal">3</mn></mrow><mrow><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=59484518&type=
4.40266657
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=59484519&type=
1.18533325
、
<math id="M5"><mi mathvariant="normal">S</mi><msubsup><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">4</mn></mrow><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=59484520&type=
4.06400013
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=59484525&type=
7.28133297
、 CO
<math id="M6"><msubsup><mrow/><mrow><mn mathvariant="normal">3</mn></mrow><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=59484526&type=
4.40266657
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=59484527&type=
3.04800010
, did not interfere with HAP adsorption of fluorine ions. In the range of temperature of 15-55 ℃, the adsorption capacity of HAP increased with the temperature increase, and reached the maxum of 8.36 mg/g at 55 °C, which was higher than the similar materials reported . After 4 times of adsorption-desorption experiments, the removal effect of HAP on fluoride ions in simulated wastewater was still in line with
the national standard. In addition, the adsorption of fluorine ions by HAP was a spontaneous process of entropy increase and heat absorption, which conformed to the adsorption isothermal models of Langmuir-Freundlich and Dubinin-Radushkevich, and followed the kinetic reaction mechanism of intra particle diffusion.
二水磷酸氢钙羟基磷灰石多扫循环伏安法氟离子去除率
calcium hydrogen phosphate dihydratehydroxyapatitemulti-scan cyclic voltammetryfluoride ionremoval efficient
陈培虎, 刘杨, 武文杰, 等, 2020. 超微羟基磷灰石(HAP)纳米粒子对水溶液中氟离子的吸附研究[J]. 化学研究, 31(3): 215-222.
崔灵周, 肖继波, 洪玉芳, 2020. 悬挂铁改性活性炭的美人蕉浮床除氟效果试验[J]. 环境污染与防治, 42(8): 971-974.
高宗仁, 2022. 超滤-反渗透工艺在地下水除氟工程中的应用[J]. 工业用水与废水, 53(2): 12-15.
郭佳丽, 韩颖超, 徐磊, 等, 2016. 纳米羟基磷灰石复合材料作为污水处理吸附剂的研究进展[J]. 硅酸盐通报, 35(8):2466-2475+2491.
何令令, 何守阳, 陈琢玉, 等, 2020. 环境中氟污染与人体氟效应[J]. 地球与环境, 48(1): 87-95.
何瑞敏, 2018. 改性高分子除氟吸附材料的研究进展[J]. 高分子通报, (12): 1-8.
胡家朋, 2016. 羟基磷灰石复合改性材料的制备及其除氟性能研究[D].南昌:南昌大学.
江声, 刘先松, 2016. 不同合成方法对羟基磷灰石吸附水中氟离子性能的影响[J]. 安徽大学学报(自然科学版), 40(2): 73-79.
蒋雯雯, 聂鹏飞, 胡彬, 等, 2021. Al2O3/AC正极选择性电容吸附水中氟离子[J]. 化工学报, 72(5):2817-2825.
金林, 徐海明, 韩佳, 等, 2019. 羟基磷灰石的合成表征及高氟水除氟效果的初步研究[J]. 当代化工研究, 8: 192-194.
李丹丹, 2020 . 二氧化钛纳米管固载镁基吸附材料的研究[D]. 北京: 北京工业大学.
刘榕芳, 肖秀峰, 林岚云, 等, 2004a. 电沉积HA/TiO2复合涂层的结合强度和热稳定性研究[J]. 无机化学学报, 20(2): 225-230.
刘榕芳, 肖秀峰, 林岚云, 等, 2004b. 水热电沉积羟基磷灰石涂层的研究[J]. 高等学校化学学报, 25(2): 304-308.
刘雨秋, 张永奎, 刘小龙, 等, 2023. 锶掺杂羟基磷灰石除氟的吸附行为及机理研究[J]. 现代化工, 43(6): 176-182, 187.
聂全义, 2020.羟基磷灰石载体微球的制备及其氟释效应[M]. 景德镇,景德镇陶瓷大学.
宋宝城, 2019. 活性氧化铝除氟材料研究进展[J].化学工程与装备, 8: 223-225.
童庆, 徐慧, 樊华, 等, 2021. Al13改性羟基磷灰石的除氟性能研究[J]. 环境科学学报, 41(7): 2748-2757.
王飞, 2019. 石灰混合溶液除氟工艺在矿井水中的应用技术探讨[J]. 煤, 28(7): 92-93.
王建新, 2014. 掺杂羟基磷灰石的合成及其结构与吸附性能的表征[D]. 北京: 中国地质大学.
吴承慧, 陈长安, 梁震, 等, 2019. 纳米级Fe3 O4对水中氟的吸附性能研究[J]. 绿色科技, (22): 79-82.
徐卫华, 冯莉, 刘腾飞, 2012. 羟基磷灰石除氟滤料的吸附平衡及动力学[J]. 环境工程学报, 6(7): 2351-2355.
亚斯曼·胡西塔尔, 王英波, 木克热木·艾比布拉,等, 2016. 吡咯聚合调控脉冲电沉积制备球形羟基磷灰石和银纳米粒子复合涂层[J]. 高分子学报, (4): 528-537.
张继剀, 毛淑贤, 2005. 人体必需微量元素与人类健康[J]. 甘肃科技, 21(3):183-184.
张强国, 谢果, 2005. 氟危害及重庆氟污染的对策[J]. 重庆科技学院学报(自然科学版), 7(4):17-19+27.
张小磊, 何宽, 马建华, 2006. 氟元素对人体健康的影响[J]. 微量元素与健康研究, 23(6): 66-67.
赵佳昕, 2022. 柠檬酸改性纳米羟基磷灰石的水热合成及除氟机理研究[D]. 北京: 煤炭科学研究总院.
郑搏英, 张亮亮, 张襄, 等, 2022. 我国吸附法处理含氟废水研究进展[J]. 广东化工, 49(3):140-142.
左友松, 刘榕芳, 肖秀峰, 2003. 电沉积HA/Ti复合涂层的研究[J]. 电镀与涂饰, 22(4): 1-4.
曾永香, 贺瑞, 裴锡波, 等, 2016. 电沉积制备氧化石墨烯-羟基磷灰石复合涂层[J]. 稀有金属材料与工程, 45(3): 727-731.
DHIRAJ M, POONAM M, VIRENDRA K S. et al, 2017. Synthesis of hydroxyapatite nanorods for application in water defluoridation and optimization of process variables: advantage of ultrasonication with precipitation method over conventional method[J]. Ultrasonics Sonochemistry. 37: 56-70.
DÍAZ I, GÓMEZ-HORTIGÜELA L, GÁLVEZ P, et al, 2019. Composite materials based on zeolite stilbite from Faroe Islands for the removal of fluoride from drinking water[J]. Am Mineral, 104(11): 1556-1564.
DURAL M U, CAVAS L, PAPAGEORGIOU S K, et al, 2011. Methylene blue adsorption on activated carbon prepared from posidonia oceanica (L) dead leaves: Kinetics and equilibrium studies[J]. Chem Eng J, 168(1): 77-85.
HU H B, LIN C J, LUI P P , et al, 2003. Electrochemical deposition of hydroxyapatite with vinyl acetate on titanium implants[J]. J Biomedical Materials Res, 65A(1): 24-29.
LI X, YU X, LIU L, et al, 2021. Preparation, characterization serpentine-loaded hydroxyapatite and its simultaneous removal performance for fluoride, iron and Manganese[J]. RSC Adv, 11(27): 16201-16215.
LIU C C, LIU J C, 2016. Coupled precipitation-ultrafiltration for treatment of high fluoride-content wastewater[J]. J Taiwan Inst Chem Eng, 58: 259-263.
LV L, HE J, WEI M, et al, 2006. Factors influencing the removal of fluoride from aqueous solution by calcined Mg-Al-CO3 layered double hydroxides[J]. J Hazard Mater, 133(1/2/3): 119-128.
MEHTA D, MONDAL P, SAHARAN V K, et al, 2017. Synthesis of hydroxyapatite nanorods for application in water defluoridation and optimization of process variables: Advantage of ultrasonication with precipitation method over conventional method[J].Ultrason Sonochemistry, 37: 56-70.
OMELON S J, GRYNPAS M D, 2008. Relationships between polyphosphate chemistry, biochemistry and apatite biomineralization[J]. Chem Rev, 108(11): 4694-4715.
ONYANGO M S, KOJIMA Y, KUMAR A , et al, 2006. Uptake of fluoride by Al3+ pretreated low-silica synthetic zeolites: Adsorption equilibrium and rate studies[J]. Separation Science and Technology, 41(4): 683-704.
PANDI K, VISWANATHAN N, 2014. Synthesis of alginate bioencapsulated nano-hydroxyapatite composite for selective fluoride sorption[J]. Carbohydr Polym, 112: 662-667.
RIVERA E M, ARAIZA M, BROSTOW W, et al, 1999. Synthesis of hydroxyapatite from eggshells[J]. Mater Lett, 41(3): 128-134.
SAIRAM SUNDARAM C, VISWANATHAN N, MEENAKSHI S, 2008. Uptake of fluoride by nano-hydroxyapatite/chitosan, a bioinorganic composite[J]. Bioresour Technol, 99(17): 8226-8230.
SHA Q, XIE H, LIU W, et al, 2023. Removal of fluoride using platanus acerifoli leaves biochar—An efficient and low-cost application in wastewater treatment[J]. Environ Technol, 44(1): 93-107.
SINGH K, LATAYE D H, WASEWAR K L, 2017. Removal of fluoride from aqueous solution by using bael (Aegle marmelos) shell activated carbon: Kinetic, equilibrium and thermodynamic study[J]. J Fluor Chem, 194: 23-32.
SINGH K, LATAYE D H, WASEWAR K L, et al, 2013. Removal of fluoride from aqueous solution: status and techniques[J]. Desalin Water Treat, 51: 3233-3247.
SUNDARAM C S, VISWANATHAN N, MEENAKSHI S,2008. Uptake of fluoride by nano-hydroxyapatite/chitosan, a bioinorganic composite[J]. Bioresource Technology, 99(17): 8226-8230.
TOFIGHY M A, MOHAMMADI T, 2011. Adsorption of divalent heavy metal ions from water using carbon nanotube sheets[J]. J Hazard Mater, 185(1): 140-147.
WEI J, LI Y B, 2004. Tissue engineering scaffold material of nano-apatite crystals and polyamide composite[J]. Eur Polym J, 40(3): 509-515.
WEKOYE J N, WANYONYI W C, WANGILA P T, et al, 2020. Kinetic and equilibrium studies of Congo red dye adsorption on cabbage waste powder[J]. Environ Chem Ecotoxicol, 2: 24-31.
XIAO X F, LIU R F, ZHENG Y Z, 2005. Hydoxyapatite/titanium composite coating prepared by hydrothermal electrochemical technique[J]. Mater Lett, 59:1660-1664.
0
浏览量
10
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构