1.昆明理工大学信息工程与自动化学院,云南 昆明 650500
2.云南省计算机技术应用重点实验室,云南 昆明 650500
彭艺(1976年生),女;研究方向:新一代无线通信技术;E-mail:12309214@kust.edu.cn
杨青青(1981年生),女;研究方向:可重构智能表面技术;E-mail:13078770200@163.com
纸质出版日期:2024-01-25,
网络出版日期:2023-12-06,
收稿日期:2023-09-14,
录用日期:2023-10-16
扫 描 看 全 文
彭艺,吴桐,杨青青.下行RIS-NOMA的用户集群方法[J].中山大学学报(自然科学版)(中英文),2024,63(01):128-136.
PENG Yi,WU Tong,YANG Qingqing.User clustering method for downlink RIS-NOMA[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(01):128-136.
彭艺,吴桐,杨青青.下行RIS-NOMA的用户集群方法[J].中山大学学报(自然科学版)(中英文),2024,63(01):128-136. DOI: 10.13471/j.cnki.acta.snus.2023B56.
PENG Yi,WU Tong,YANG Qingqing.User clustering method for downlink RIS-NOMA[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(01):128-136. DOI: 10.13471/j.cnki.acta.snus.2023B56.
为提高用户分布非均匀的场景下可重构智能表面(RIS)辅助下行非正交多址(NOMA)通信系统的性能,提出了一种分布式RIS辅助下行NOMA的用户聚类方案。首先,采用自适应几何分布(AGD)聚类算法划分用户集群(UCs),从而为各UC匹配RIS。然后,利用分式规划(FP)方法将非凸最大化频谱效率问题转换为凸优化问题。最后,为UC内用户逐级进行功率分配(PA)与被动波束形成(PB)。仿真结果表明,与谱聚类(SPC)、K均值(K-means)、高斯混合模型(GMM)聚类方案和正交多址(OMA)方案相比,在AGD方案下,功率对频谱效率提升了7%、14%、19%和42%的增益,反射面对频谱效率提升了16%、19%、26%和40%的增益。
In order to enhance the performance of downlink non-orthogonal multiple access(NOMA) communication systems assisted by reconfigurable intelligent surfaces(RIS) in scenarios with non-uniform user distribution, a distributed user clustering scheme for downlink NOMA assisted by RIS has been proposed. Firstly, the adaptive geometric distribution (AGD) clustering algorithm is utilized to cluster users into user clusters (UCs) and match RIS with each UC. Then, the fractional programming (FP) method is employed to transform non-convex maximization and rate problems into convex optimization problems. Finally, power allocation (PA) and passive beamforming (PB) are performed sequentially for users within UCs. Simulation results demonstrate that, compared to spectral clustering (SPC), K-means, Gaussian mixture model(GMM) clustering schemes and orthogonal multiple access (OMA), the AGD scheme yields approximately 7%, 14%, 19% and 42% gains in power-to-spectral efficiency, while RIS contributes approximately 16%, 19%, 26% and 40% improvements in spectral efficiency.
可重构智能表面非正交多址用户集群分式规划
reconfigurable intelligent surfacenon-orthogonal multiple accessuser clusteringfractional programming
季薇, 赵亚楠, 刘子卿,等,2023. 面向服务质量的RIS辅助的多用户NOMA系统功率分配方案[J/OL]. 电子与信息学报.http://kns.cnki.net/kcms/detail/11.4494.TN.20230620.1707.008.htmlhttp://kns.cnki.net/kcms/detail/11.4494.TN.20230620.1707.008.html.
彭艺, 吴桐, 杨青青, 2023.下行RIS-NOMA系统交替优化波束形成方法[J]. 北京邮电大学学报, 46(4): 64-69.
田心记, 王坤, 李兴旺, 2022. 基于功率最小化的IRS辅助上行NOMA系统资源分配方法[J/OL]. 电子与信息学报.http://kns.cnki.net/kcms/detail/11.4494.TN.20230204. 2015.007.htmlhttp://kns.cnki.net/kcms/detail/11.4494.TN.20230204.2015.007.html.
BJÖRNSON E, ÖZDOGAN Ö, LARSSON E G, 2020. Reconfigurable intelligent surfaces: Three myths and two critical questions[J].IEEE Commun Mag, 58(12): 90-96.
Di RENZO M, NTONTIN K, SONG J, et al, 2020. Reconfigurable intelligent surfaces vs. relaying: Differences, similarities, and performance comparison[J]. IEEE Open J Commun Soc,1:798-807.
ELHATTAB M, ARFAOUI M A, ASSI C, et al, 2022. RIS-assisted joint transmission in a two-cell downlink NOMA cellular system[J]. IEEE J Sel Areas Commun, 40(4):1270-1286.
ELMOSSALLAM Y, ZHANG H, SONG L, et al, 2020. Reconfigurable intelligent surfaces for wireless communications: Principles, challenges, and opportunities[J]. IEEE Trans Cogn Commun Netw, 6(3): 990-1002.
GAO X, LIU Y, LIU X, et al, 2022. Machine learning empowered resource allocation in IRS aided MISO-NOMA networks [J]. IEEE Trans Wirel Commun, 21(5): 3478-3492.
KATWE M, SINGH K, SHARMA P K, et al, 2022. Energy efficiency maximization for UAV-assisted full-duplex NOMA system: User clustering and resource allocation[J]. IEEE Trans Green Commun Netw, 6(2): 992-1008.
LIASKOS C, NIE S, TSIOLIARIDOU A, et al, 2018. A new wireless communication paradigm through software-controlled meta-surfaces[J]. IEEE Commun Mag, 56(9): 162-169.
MU X, LIU Y, GUO L, et al, 2020. Exploiting intelligent reflecting surfaces in NOMA networks: Joint beamforming optimization [J]. IEEE Trans Wirel Commun, 19(10): 6884-6898.
SHEN K, YU W, 2018. Fractional programming for communication systems—Part I: Power control and beamforming[J]. IEEE Trans Signal Process, 66(10): 2616-2630.
WU Q, ZHANG R, 2020. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless interwork[J]. IEEE Commun Mag, 58(1): 106-112.
XIE H, XU J, LIU Y F, et al, 2021. Max-min fairness in IRS-aided multi-cell MISO systems with joint transmit and reflective beamforming[J]. IEEE Trans Wirel Commun, 20(2):1379-1393.
YANG S, ZHANG J, XIA W, et al, 2022. On the discrete phase shifts design for distributed RIS-aided downlink MIMO-NOMA systems [C]// IEEE Wireless Communications and Networking Conference (WCNC). Austin, TX, USA: IEEE: 363-368.
ZENG J, LV T, LIU R P, et al, 2018. Investigation on evolving single-carrier NOMA into multi-carrier NOMA in 5G [J]. IEEE Access,6(48):268-288.
ZHENG B,WU Q,ZHANG R,2020. Intelligent reflecting surface-assisted multiple access with user pairing: NOMA or OMA?[J].IEEE Commun Lett,24(4): 753-757.
ZHANG S,ZHANG R, 2021. Intelligent reflecting surface aided multi-user communication: Capacity region and deployment strategy[J]. IEEE Trans Commun, 69(9): 5790-5806.
0
浏览量
5
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构