1.广东海洋大学电子与信息工程学院,广东 湛江 524088
2.广东省智慧海洋传感网及其装备工程技术研究中心,广东 湛江 524088
付雷(1996年生),男;研究方向:无线传感器网络;E-mail:2112210003@stu.gdou.edu.cn
王骥(1972年生),男;研究方向:海洋物联网与人工智能;E-mail:wangji@gdou.edu.cn
纸质出版日期:2024-03-25,
网络出版日期:2024-01-05,
收稿日期:2023-10-15,
录用日期:2023-11-22
扫 描 看 全 文
付雷,王骥.基于改进蜣螂优化算法的海洋牧场三维UWSN覆盖方法[J].中山大学学报(自然科学版)(中英文),2024,63(02):115-122.
FU Lei,WANG Ji.3D UWSN coverage method for marine ranching based on improved Dung beetle optimization algorithm[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(02):115-122.
付雷,王骥.基于改进蜣螂优化算法的海洋牧场三维UWSN覆盖方法[J].中山大学学报(自然科学版)(中英文),2024,63(02):115-122. DOI: 10.13471/j.cnki.acta.snus.2023B063.
FU Lei,WANG Ji.3D UWSN coverage method for marine ranching based on improved Dung beetle optimization algorithm[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(02):115-122. DOI: 10.13471/j.cnki.acta.snus.2023B063.
针对海洋牧场三维环境监测,提出了一种基于改进蜣螂优化算法(IDBO, improved Dung beetle optimizer)的UWSN(underwater wireless sensor networks)覆盖方法。首先,在蜣螂优化算法(DBO)种群初始化时加入Chebyshev混沌映射,使得种群资源在搜索空间的分配方面更加均衡。其次,通过自适应权重因子和Levy飞行改进觅食小蜣螂的位置更新方式,提升了位置搜索能力和DBO算法的收敛能力。将IDBO算法应用在海洋牧场UWSN覆盖优化中,仿真结果表明:在不同参数环境下,IDBO算法的覆盖率高于随机部署和其他智能优化算法,并且能以较低的节点能耗获得更高的覆盖率,节点分布也更加合理。
For the environmental monitoring of marine ranching, a 3D underwater wireless sensor networks coverage method based on improved Dung beetle optimizer (IDBO) is proposed. Firstly, Chebyshev chaotic mapping was added to the DBO population initialization to make population resources more balanced in the allocation of search space. Secondly, adaptive weight factor and Levy flight were used to improve the position update mode of Dung beetles, which improved the position search ability and the convergence ability of DBO algorithm. The IDBO algorithm was applied to the UWSN coverage optimization of marine ranching,the simulation results show that the coverage rate of IDBO algorithm is higher than that of random deployment and other intelligent optimization algorithms under different parameter environments, and it achieves higher coverage rate with lower node energy consumption, and the distribution of nodes is more reasonable.
海洋牧场水下无线传感器网络Chebyshev混沌映射自适应权重因子Levy飞行
marine ranchingUWSNChebyshev chaotic mappingadaptive weight factorLevy flight
陈必帅, 王燕杰, 贾生尧, 等, 2023. 基于Chan与改进麻雀搜索算法的协同定位算法[J/OL]. 激光与光电子学进展: 1-19.http://kns.cnki.net/kcms/detail/31.1690.TN.20230714.1054.200.htmlhttp://kns.cnki.net/kcms/detail/31.1690.TN.20230714.1054.200.html.
陈健瑞, 王景璟, 侯向往, 等, 2021. 挺进深蓝: 从单体仿生到群体智能[J]. 电子学报, 49(12): 2458-2467.
陈立万, 曾蝶, 赵尚飞, 等, 2023. 基于EGWOEO算法的三维无线传感网络覆盖优化[J]. 电子测量技术, 46(4): 25-34.
陈炫儒, 吴立飞, 杨晓忠, 2023. 基于改进麻雀搜索算法的分数阶PID参数整定[J/OL]. 控制与决策: 1-7.https://doi.org/10.13195/j.kzyjc.2022.1360https://doi.org/10.13195/j.kzyjc.2022.1360.
丁瑞成, 周玉成, 2022. 引入莱维飞行与动态权重的改进灰狼算法[J]. 计算机工程与应用, 58(23): 74-82.
范兴刚, 蒿翔, 程斯颢, 等, 2018. 基于节点重部署的水下传感器网络三维栅栏覆盖[J]. 传感技术学报, 31(2): 304-311.
李守玉, 何庆, 陈俊, 2022. 改进平衡优化器算法的WSN覆盖优化[J]. 计算机应用研究, 39(4): 1168-1172+1189.
李思成, 魏云冰, 邱永露, 2022. 自主多决策粒子群的无线传感器网络覆盖优化[J]. 仪表技术与传感器, (9): 26-35.
石拓, 李建中, 高宏, 2021. 多等级通信半径的无源传感器网络中的覆盖问题[J]. 软件学报, 32(8): 2580-2596.
滕志军, 李哲, 王幸幸, 等, 2023. 无线传感器网络中基于µ律爆炸算子的烟花虚拟力混合覆盖策略[J]. 控制理论与应用, 40(5): 817-824.
夏候凯顺, 严娟, 叶小朋, 等, 2014. 基于Kalman滤波的无线传感器网络多目标跟踪[J]. 中山大学学报(自然科学版), 53(2): 18-22.
许杰, 汤显峰, 2023. 融合莱维飞行与混合变异的蝠鲼觅食优化传感器节点覆盖策略[J]. 传感技术学报, 36(4): 635-645.
庄曜铭, 吴成东, 张云洲, 2018. 一种面向三维感知的多媒体传感器网络覆盖增强算法[J]. 东北大学学报(自然科学版), 39(5): 609-612+618.
LUO C, CAO Y, XIN G, et al, 2021. Three-dimensional coverage optimization of underwater nodes under multiconstraints combined with water flow[J]. IEEE Internet Things J, 9(3): 2375-2389.
PRIYADARSHI R, GUPTA B, 2021. Area coverage optimization in three-dimensional wireless sensor network[J]. Wirel Pers Commun, 117: 843-865.
SAAD A, SENOUCI M R, BENYATTOU O, 2020. Toward a realistic approach for the deployment of 3D Wireless Sensor Networks[J]. IEEE Trans Mob Comput, 21(4): 1508-1519.
WANG W, HUANG H, HE F, et al, 2019. An enhanced virtual force algorithm for diverse k-coverage deployment of 3D underwater wireless sensor networks[J]. Sensors, 19(16): 3496.
XUE J, SHEN B, 2023. Dung beetle optimizer: A new meta-heuristic algorithm for global optimization[J]. J Supercomput, 79(7): 7305-7336.
ZHANG Y, WANG M, LIANG J, et al, 2017. Coverage enhancing of 3D underwater sensor networks based on improved fruit fly optimization algorithm[J]. Soft Comput, 21: 6019-6029.
ZHOU J, QI G, LIU C, 2021. A chaotic parallel artificial fish swarm algorithm for water quality monitoring sensor networks 3D coverage optimization[J]. J Sens, 2021: 1-12.
0
浏览量
5
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构