中山大学人工智能学院,广东 珠海 519082
杜兴瑞(1997年生),男;研究方向:智能控制;E-mail:duxr7@mail2.sysu.edu.cn
孟云鹤(1978年生),男;研究方向:智能控制;E-mail:mengyh7@mail.sysu.edu.cn
纸质出版日期:2024-03-25,
网络出版日期:2023-09-26,
收稿日期:2023-07-09,
录用日期:2023-08-02
扫 描 看 全 文
杜兴瑞,孟云鹤,陆璐.基于Lyapunov-MPC方法的非合作目标近距离抵近控制[J].中山大学学报(自然科学版)(中英文),2024,63(02):85-94.
DU Xingrui,MENG Yunhe,LU Lu.Non-cooperative target proximity control based on Lyapunov-MPC method[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(02):85-94.
杜兴瑞,孟云鹤,陆璐.基于Lyapunov-MPC方法的非合作目标近距离抵近控制[J].中山大学学报(自然科学版)(中英文),2024,63(02):85-94. DOI: 10.13471/j.cnki.acta.snus.2023B047.
DU Xingrui,MENG Yunhe,LU Lu.Non-cooperative target proximity control based on Lyapunov-MPC method[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(02):85-94. DOI: 10.13471/j.cnki.acta.snus.2023B047.
针对航天器近距离视线抵近同时存在轨道与姿态机动的非合作目标特定方位控制问题,提出了一种基于控制Lyapunov函数(CLF)的模型预测控制方法(LMPC)。首先,根据视线坐标系下的轨道动力学方程,建立了满足视线指向要求的航天器相对轨道动力学模型,并推导了期望轨道的解析表达式。其次,利用MPC方法设计控制器进行在线优化控制,并通过纳入基于李雅普洛夫方法的非线性反步控制的显式特征,构建收缩约束式,以确保闭环稳定性。接着,对基于LMPC的控制方法的递归可行性和闭环稳定性进行了证明。最后,仿真结果证明了所设计的LMPC轨迹跟踪方法的有效性和鲁棒性。
A model predictive control method based on Lyapunov function (LMPC) is proposed to control the specific orientation of non-cooperative spacecraft with orbit and attitude maneuvers. Firstly, according to the orbital dynamics equation in the line-of-sight coordinate system, the relative orbital dynamics model of the spacecraft satisfying the requirements of line-of-sight direction is established, and the analytical expression of the expected orbit is derived. Secondly, the MPC method is used to design the controller for online optimization control, and the contraction constraint formula is constructed to ensure the closed-loop stability by incorporating the display features of the nonlinear backstepping control based on the Lyapunov method. Then, the recursive feasibility and closed-loop stability of LMPC based control method are proved. Finally, the simulation results prove the effectiveness and robustness of the proposed LMPC trajectory tracking method.
非合作目标近距离视线抵近非线性动力学系统控制Lyapunov函数模型预测控制
non-cooperative targetclose line of sightnonlinear dynamic systemcontrol Lyapunov functionmodel predictive control
陈统, 徐世杰, 2006. 非合作式自主交会对接的终端接近模糊控制[J]. 宇航学报, 27(3): 416-421.
董凯凯, 罗建军, 马卫华,等, 2021. 非合作目标交会的双层MPC全局轨迹规划控制[J]. 航空学报, 42(11): 217-228.
高登巍,罗建军,马卫华,等,2013a. 接近和跟踪非合作机动目标的非线性最优控制[J]. 宇航学报, 34(6): 773-781.
高登巍, 罗建军,马卫华, 2013b. 基于Lyapunov方法的非合作目标接近与视线跟踪[J]. 西北工业大学学报, 31(4): 577-583.
敬忠良, 2011. 航天器自主操作的测量与控制[M]. 北京:中国宇航出版社.
DONG K K,LUO J J, WEI L H, 2020. Tube-based robust output feedback model predictive control for autonomous rendezvous and docking with a tumbling target[J]. Adv Space Res, 4:1158-1181.
KHALIL H, 1996. Nonlinear systems[M]. New York, USA: Prentice-Hall:117-235.
LEOMANNI M, ROGERS E, GABRIEL S B, 2014. Explicit model predictive control approach for low-thrust spacecraft proximity operations[J].J Guid Control Dynam, (6): 1780-1790.
LI P, ZHU Z H, MEGUID S A, 2016. State dependent model predictive control for orbital rendezvous using pulse-width pulse-frequency modulated thrusters[J]. Adv Space Res, 58(1): 64-73.
LI Y P, ZHU Z H, 2017. Line-of-sight nonlinear model predictive control for autonomous rendezvous in elliptical orbit[J]. Aerosp Sci Technol, 69: 236-243.
LIU J F, 2011. Networked and distributed predictive control: Methods and nonlinear process network applications[D].Los Angeles:University of California.
MACIEJOWSKI J, 2003. Predictive control with constraints[M].Harlow, UK:Prentice-Hall, Pearson Education Limited.
MAMMARELLA M, CAPELLO E, PARK H, et al, 2018.Tube-based robust model predictive control for spacecraft proximity operations in the presence of persistent disturbance[J].Aerospace Science and Technology, 77: 585-594.
MAYNE D Q, RAWLINGS J B, RAO C V, et al, 2000. Constrained model predictive control: Stability and optimality[J]. Automatica, 36(6): 789-814.
MA Z, MA O, SHASHIKANTH B N, 2007. Optimal approach to and alignment with a rotating rigid body for capture[J]. J Astronaut Sci, 55: 407-419.
MING X, BALAKRISHNAN S, 2002. State dependent Riccati equation based spacecraft attitude control[C]// 40th AIAA Aerospace Sciences Meeting and Exhibit. AIAA Paper.
MING X, BALAKRISHNAN S N, STANSBERY D, 2004. Spacecraft position and attitude control with theta-D technique[C]//42nd AIAA Aerospace Sciences Meeting and Exhibit. AIAA Paper.
MING X, PAN H, 2011. Nonlinear optimal control of spacecraft approaching a tumbling target[J]. Aerosp Sci Technol, 15(2): 79-89.
PENG H, JIANG X, CHEN B, 2014.Optimal nonlinear feedback control of spacecraft rendezvous with finite low thrust between libration orbits[J]. Nonlinear Dynam, 76(2): 1611-1632.
STANSBERY D T, CLOUTIER J, 2000. Position and attitude control of a spacecraft using the state-dependent Riccati equation technique[C]//Proc 2000 Am Control Conf. ACC( IEEE Cat 00CH36334), 3: 1867-1871.
ZHANG H, LUO Y, LIU D, 2009. Neural-network-based near-optimal control for a class of discrete-time affine nonlinear systems with control constraints[J]. IEEE Trans Neural Netw, 20(9): 1490-1503.
0
浏览量
8
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构