1.中山大学航空航天学院,广东 深圳 518107
2.深圳市智能微小卫星星座技术与应用重点实验室,广东 深圳 518107
秦英泉(1999年生),男;研究方向:非线性振动;E-mail:qinyq5@mail2.sysu.edu.cn
刘广(1992年生),男;研究方向:非线性振动、参数识别;E-mail:liug36@mail.sysu.edu.cn
纸质出版日期:2023-11-25,
网络出版日期:2023-09-21,
收稿日期:2023-05-27,
录用日期:2023-06-29
扫 描 看 全 文
秦英泉,刘祚秋,刘济科等.基于时域最小残值法求解含间隙非线性气动弹性系统的半解析解[J].中山大学学报(自然科学版),2023,62(06):98-106.
QIN Yingquan,LIU Zuoqiu,LIU Jike,et al.Semi-analytical solution of nonlinear aeroelastic systems with freeplay based on the time-domain minimum residual method[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(06):98-106.
秦英泉,刘祚秋,刘济科等.基于时域最小残值法求解含间隙非线性气动弹性系统的半解析解[J].中山大学学报(自然科学版),2023,62(06):98-106. DOI: 10.13471/j.cnki.acta.snus.2023B031.
QIN Yingquan,LIU Zuoqiu,LIU Jike,et al.Semi-analytical solution of nonlinear aeroelastic systems with freeplay based on the time-domain minimum residual method[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(06):98-106. DOI: 10.13471/j.cnki.acta.snus.2023B031.
采用时域最小残值法求解了含间隙非线性气动弹性系统的半解析周期解。首先,将气动弹性系统的周期解展开为傅里叶级数,并截断前
<math id="M1"><mi>N</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51097739&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51097736&type=
2.28600001
2.28600001
项作为系统的近似解析解;通过对近似解求导,获得系统的速度和加速度函数;并将位移、速度和加速度函数回代到原始的气动弹性系统,将半解析解求解问题转化为一个非线性最小二乘优化问题。最后,通过增强响应灵敏度方法来迭代求解该最小值问题。在迭代过程中,Tikhonov正则化和“置信域限制”被用来增强算法的收敛性。数值算例表明,时域最小残值法可以快速获得高精度的半解析解。
The semi-analytical periodic solution of a nonlinear aeroelastic system with freeplay was solved by the time-domain minimum residual method. First, the periodic solution of the aeroelastic system is expanded into the Fourier series, and the first
<math id="M2"><mi>N</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51097742&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51097740&type=
2.62466669
2.62466669
term is truncated as the approximate analytical solution. Then, the velocity and acceleration of the system are obtained by taking the derivative of the approximate solution in the time. And the displacement, velocity and acceleration functions are substituted back into the original aeroelastic system. Then,the problem of solving the semi-analytical solution is transformed into a nonlinear least-square optimization problem. Finally, such minimum value optimization problem is iteratively solved by the enhanced response sensitivity approach. In the above iteration, the Tikhonov regularization and “trust-region constraint” are used to enhance the algorithm’s convergence. Numerical examples show that the time-domain minimum residual method can quickly obtain high-precision semi-analytical solutions.
间隙非线性时域最小残值法周期解Tikhonov正则化
freeplay nonlinearitythe time-domain minimum residual methodperiodic solutionTikhonov regularization
齐念, 叶继红, 2013. 基于离散元法的杆系结构几何非线性大变形分析[J]. 东南大学学报: 自然科学版, 43(5): 917-922.
杨超, 杨澜, 谢长川, 2018. 大展弦比柔性机翼气动弹性分析中的气动力方法研究进展[J]. 空气动力学学报, 36(6): 1009-1018+983.
杨智春, 田玮, 谷迎松, 等, 2016. 带集中非线性的机翼气动弹性问题研究进展[J]. 航空学报, 37(7): 2013-2044.
DARABI M K, HUANG C W, BAZZAZ M, et al, 2019. Characterization and validation of the nonlinear viscoelastic-viscoplastic with hardening-relaxation constitutive relationship for asphalt mixtures[J]. Constr Build Mater, 216: 648-660.
GUPTA R, ANSELL P J, 2019. Unsteady flow physics of airfoil dynamic stall[J]. AIAA Journal, 57(1): 165-175.
HANSEN P C, 1992. Analysis of discrete ill-posed problems by means of the L-curve[J]. SIAM Rev, 34(4): 561-580.
HASSARD B D, KAZARINOFF N D, WAN Y H, et al, 1981. Theory and applications of Hopf bifurcation[M]. New York: Cambridge Univercity Press.
LIAO S J,SHERIF S A, 2004. Beyond perturbation: Introduction to the homotopy analysis method[J]. Appl Mech Rev, 57(5): B25-B26.
LIU G, LV Z R, LIU J K, et al, 2018. Quasi-periodic aeroelastic response analysis of an airfoil with external store by incremental harmonic balance method[J]. Int J Non Linear Mech, 100: 10-19.
LIU G, LU Z R, LIU J K, et al, 2021a. A New semi-analytical technique for nonlinear systems based on response sensitivity analysis[J]. Nonlinear Dyn, 103(2): 1529-1551.
LIU G, WANG L, LIU J K, et al, 2021b. A new semi-analytical approach for quasi-periodic vibrations of nonlinear systems[J]. Commun Nonlinear Sci Numer Simul, 103: 105999.
LIU G, WANG L, LIU J K, et al, 2020. Parameter identification of nonlinear aeroelastic system with time-delayed feedback control[J]. AIAA Journal, 57(1): 165-175.
LIU G, LIU J K, WANG L, et al, 2022. Time-domain minimum residual method combined with energy balance for nonlinear conservative systems[J]. Mech Syst Signal Process, 170: 108818.
LIU J K, CHEN F X, CHEN Y M, 2012. Bifurcation analysis of aeroelastic systems with hysteresis by incremental harmonic balance method[J]. Appl Math Comput, 219(5): 2398-2411.
MARSDEN J E, McCRACKEN M, 1976. The Hopf bifurcation and its applications[M]. New York,NY:Springer Science & Business Media.
MIGUEL L P, de OLIVEIRA TELOLI R, da SILVA S, 2020. Some practical regards on the application of the harmonic balance method for hysteresis models[J]. Mech Syst Signal Process, 143: 106842.
SHI Y, HE S, CUI G,et al, 2023. Oscillation quenching and physical explanation on freeplay-based aeroelastic airfoil in transonic viscous flow[J]. Chin J Aeronaut.https://doi.org/10.1016/j.cja.2023.05.016https://doi.org/10.1016/j.cja.2023.05.016.
THEODORSEN T,1949. General theory of aerodynamic instability and the mechanism of flutter[R]. California:NASA Ames Research Center.
TRICKEY S T, 2000. Global and local dynamics of an aeroelastic system with a control surface freeplay nonlinearity[M]. Durham:Duke University.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构